MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunsn Structured version   Visualization version   GIF version

Theorem domunsn 8110
Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
domunsn (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)

Proof of Theorem domunsn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sdom0 8092 . . . . 5 ¬ 𝐴 ≺ ∅
2 breq2 4657 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ≺ ∅))
31, 2mtbiri 317 . . . 4 (𝐵 = ∅ → ¬ 𝐴𝐵)
43con2i 134 . . 3 (𝐴𝐵 → ¬ 𝐵 = ∅)
5 neq0 3930 . . 3 𝐵 = ∅ ↔ ∃𝑧 𝑧𝐵)
64, 5sylib 208 . 2 (𝐴𝐵 → ∃𝑧 𝑧𝐵)
7 domdifsn 8043 . . . . 5 (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝑧}))
87adantr 481 . . . 4 ((𝐴𝐵𝑧𝐵) → 𝐴 ≼ (𝐵 ∖ {𝑧}))
9 vex 3203 . . . . . . 7 𝑧 ∈ V
10 en2sn 8037 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑧 ∈ V) → {𝐶} ≈ {𝑧})
119, 10mpan2 707 . . . . . 6 (𝐶 ∈ V → {𝐶} ≈ {𝑧})
12 endom 7982 . . . . . 6 ({𝐶} ≈ {𝑧} → {𝐶} ≼ {𝑧})
1311, 12syl 17 . . . . 5 (𝐶 ∈ V → {𝐶} ≼ {𝑧})
14 snprc 4253 . . . . . . 7 𝐶 ∈ V ↔ {𝐶} = ∅)
1514biimpi 206 . . . . . 6 𝐶 ∈ V → {𝐶} = ∅)
16 snex 4908 . . . . . . 7 {𝑧} ∈ V
17160dom 8090 . . . . . 6 ∅ ≼ {𝑧}
1815, 17syl6eqbr 4692 . . . . 5 𝐶 ∈ V → {𝐶} ≼ {𝑧})
1913, 18pm2.61i 176 . . . 4 {𝐶} ≼ {𝑧}
20 incom 3805 . . . . . 6 ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ({𝑧} ∩ (𝐵 ∖ {𝑧}))
21 disjdif 4040 . . . . . 6 ({𝑧} ∩ (𝐵 ∖ {𝑧})) = ∅
2220, 21eqtri 2644 . . . . 5 ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅
23 undom 8048 . . . . 5 (((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) ∧ ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
2422, 23mpan2 707 . . . 4 ((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
258, 19, 24sylancl 694 . . 3 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
26 uncom 3757 . . . 4 ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝐵 ∖ {𝑧}))
27 simpr 477 . . . . . 6 ((𝐴𝐵𝑧𝐵) → 𝑧𝐵)
2827snssd 4340 . . . . 5 ((𝐴𝐵𝑧𝐵) → {𝑧} ⊆ 𝐵)
29 undif 4049 . . . . 5 ({𝑧} ⊆ 𝐵 ↔ ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
3028, 29sylib 208 . . . 4 ((𝐴𝐵𝑧𝐵) → ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
3126, 30syl5eq 2668 . . 3 ((𝐴𝐵𝑧𝐵) → ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = 𝐵)
3225, 31breqtrd 4679 . 2 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ 𝐵)
336, 32exlimddv 1863 1 (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cen 7952  cdom 7953  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  canthp1lem1  9474
  Copyright terms: Public domain W3C validator