MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undom Structured version   Visualization version   GIF version

Theorem undom 8048
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
undom (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem undom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 7961 . . . . . . 7 Rel ≼
21brrelex2i 5159 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 7969 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 256 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
61brrelexi 5158 . . . . . . 7 (𝐶𝐷𝐶 ∈ V)
7 difss 3737 . . . . . . 7 (𝐶𝐴) ⊆ 𝐶
8 ssdomg 8001 . . . . . . 7 (𝐶 ∈ V → ((𝐶𝐴) ⊆ 𝐶 → (𝐶𝐴) ≼ 𝐶))
96, 7, 8mpisyl 21 . . . . . 6 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐶)
10 domtr 8009 . . . . . 6 (((𝐶𝐴) ≼ 𝐶𝐶𝐷) → (𝐶𝐴) ≼ 𝐷)
119, 10mpancom 703 . . . . 5 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐷)
121brrelex2i 5159 . . . . . . 7 ((𝐶𝐴) ≼ 𝐷𝐷 ∈ V)
13 domeng 7969 . . . . . . 7 (𝐷 ∈ V → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1412, 13syl 17 . . . . . 6 ((𝐶𝐴) ≼ 𝐷 → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1514ibi 256 . . . . 5 ((𝐶𝐴) ≼ 𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
1611, 15syl 17 . . . 4 (𝐶𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
175, 16anim12i 590 . . 3 ((𝐴𝐵𝐶𝐷) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1817adantr 481 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
19 eeanv 2182 . . 3 (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) ↔ (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
20 simprll 802 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐴𝑥)
21 simprrl 804 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐶𝐴) ≈ 𝑦)
22 disjdif 4040 . . . . . . . 8 (𝐴 ∩ (𝐶𝐴)) = ∅
2322a1i 11 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴 ∩ (𝐶𝐴)) = ∅)
24 ss2in 3840 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
2524ad2ant2l 782 . . . . . . . . 9 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
2625adantl 482 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
27 simplr 792 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) = ∅)
28 sseq0 3975 . . . . . . . 8 (((𝑥𝑦) ⊆ (𝐵𝐷) ∧ (𝐵𝐷) = ∅) → (𝑥𝑦) = ∅)
2926, 27, 28syl2anc 693 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) = ∅)
30 undif2 4044 . . . . . . . 8 (𝐴 ∪ (𝐶𝐴)) = (𝐴𝐶)
31 unen 8040 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴 ∪ (𝐶𝐴)) ≈ (𝑥𝑦))
3230, 31syl5eqbrr 4689 . . . . . . 7 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴𝐶) ≈ (𝑥𝑦))
3320, 21, 23, 29, 32syl22anc 1327 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≈ (𝑥𝑦))
342ad3antrrr 766 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐵 ∈ V)
351brrelex2i 5159 . . . . . . . . 9 (𝐶𝐷𝐷 ∈ V)
3635ad3antlr 767 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐷 ∈ V)
37 unexg 6959 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
3834, 36, 37syl2anc 693 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) ∈ V)
39 unss12 3785 . . . . . . . . 9 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
4039ad2ant2l 782 . . . . . . . 8 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
4140adantl 482 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
42 ssdomg 8001 . . . . . . 7 ((𝐵𝐷) ∈ V → ((𝑥𝑦) ⊆ (𝐵𝐷) → (𝑥𝑦) ≼ (𝐵𝐷)))
4338, 41, 42sylc 65 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ≼ (𝐵𝐷))
44 endomtr 8014 . . . . . 6 (((𝐴𝐶) ≈ (𝑥𝑦) ∧ (𝑥𝑦) ≼ (𝐵𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷))
4533, 43, 44syl2anc 693 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≼ (𝐵𝐷))
4645ex 450 . . . 4 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4746exlimdvv 1862 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4819, 47syl5bir 233 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → ((∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4918, 48mpd 15 1 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915   class class class wbr 4653  cen 7952  cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-en 7956  df-dom 7957
This theorem is referenced by:  domunsncan  8060  domunsn  8110  sucdom2  8156  unxpdom2  8168  sucxpdom  8169  fodomfi  8239  uncdadom  8993  cdadom1  9008
  Copyright terms: Public domain W3C validator