| Step | Hyp | Ref
| Expression |
| 1 | | 1sdom2 8159 |
. . 3
⊢
1𝑜 ≺ 2𝑜 |
| 2 | | cdaxpdom 9011 |
. . 3
⊢
((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺
2𝑜) → (𝐴 +𝑐
2𝑜) ≼ (𝐴 ×
2𝑜)) |
| 3 | 1, 2 | mpan2 707 |
. 2
⊢
(1𝑜 ≺ 𝐴 → (𝐴 +𝑐
2𝑜) ≼ (𝐴 ×
2𝑜)) |
| 4 | | sdom0 8092 |
. . . . . 6
⊢ ¬
1𝑜 ≺ ∅ |
| 5 | | breq2 4657 |
. . . . . 6
⊢ (𝐴 = ∅ →
(1𝑜 ≺ 𝐴 ↔ 1𝑜 ≺
∅)) |
| 6 | 4, 5 | mtbiri 317 |
. . . . 5
⊢ (𝐴 = ∅ → ¬
1𝑜 ≺ 𝐴) |
| 7 | 6 | con2i 134 |
. . . 4
⊢
(1𝑜 ≺ 𝐴 → ¬ 𝐴 = ∅) |
| 8 | | neq0 3930 |
. . . 4
⊢ (¬
𝐴 = ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
| 9 | 7, 8 | sylib 208 |
. . 3
⊢
(1𝑜 ≺ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
| 10 | | relsdom 7962 |
. . . . . . . . . 10
⊢ Rel
≺ |
| 11 | 10 | brrelex2i 5159 |
. . . . . . . . 9
⊢
(1𝑜 ≺ 𝐴 → 𝐴 ∈ V) |
| 12 | 11 | adantr 481 |
. . . . . . . 8
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
| 13 | | enrefg 7987 |
. . . . . . . 8
⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝐴 ≈ 𝐴) |
| 15 | | df2o2 7574 |
. . . . . . . . 9
⊢
2𝑜 = {∅, {∅}} |
| 16 | | pwpw0 4344 |
. . . . . . . . 9
⊢ 𝒫
{∅} = {∅, {∅}} |
| 17 | 15, 16 | eqtr4i 2647 |
. . . . . . . 8
⊢
2𝑜 = 𝒫 {∅} |
| 18 | | 0ex 4790 |
. . . . . . . . . 10
⊢ ∅
∈ V |
| 19 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 20 | | en2sn 8037 |
. . . . . . . . . 10
⊢ ((∅
∈ V ∧ 𝑥 ∈ V)
→ {∅} ≈ {𝑥}) |
| 21 | 18, 19, 20 | mp2an 708 |
. . . . . . . . 9
⊢ {∅}
≈ {𝑥} |
| 22 | | pwen 8133 |
. . . . . . . . 9
⊢
({∅} ≈ {𝑥} → 𝒫 {∅} ≈
𝒫 {𝑥}) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . 8
⊢ 𝒫
{∅} ≈ 𝒫 {𝑥} |
| 24 | 17, 23 | eqbrtri 4674 |
. . . . . . 7
⊢
2𝑜 ≈ 𝒫 {𝑥} |
| 25 | | xpen 8123 |
. . . . . . 7
⊢ ((𝐴 ≈ 𝐴 ∧ 2𝑜 ≈
𝒫 {𝑥}) →
(𝐴 ×
2𝑜) ≈ (𝐴 × 𝒫 {𝑥})) |
| 26 | 14, 24, 25 | sylancl 694 |
. . . . . 6
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 × 2𝑜) ≈
(𝐴 × 𝒫 {𝑥})) |
| 27 | | snex 4908 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
| 28 | 27 | pwex 4848 |
. . . . . . 7
⊢ 𝒫
{𝑥} ∈
V |
| 29 | | uncom 3757 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = ({𝑥} ∪ (𝐴 ∖ {𝑥})) |
| 30 | | simpr 477 |
. . . . . . . . . . 11
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 31 | 30 | snssd 4340 |
. . . . . . . . . 10
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → {𝑥} ⊆ 𝐴) |
| 32 | | undif 4049 |
. . . . . . . . . 10
⊢ ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴) |
| 33 | 31, 32 | sylib 208 |
. . . . . . . . 9
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴) |
| 34 | 29, 33 | syl5eq 2668 |
. . . . . . . 8
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴) |
| 35 | | difexg 4808 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝐴 ∖ {𝑥}) ∈ V) |
| 36 | 12, 35 | syl 17 |
. . . . . . . . 9
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ V) |
| 37 | | canth2g 8114 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝑥}) ∈ V → (𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥})) |
| 38 | | domunsn 8110 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥})) |
| 39 | 36, 37, 38 | 3syl 18 |
. . . . . . . 8
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥})) |
| 40 | 34, 39 | eqbrtrrd 4677 |
. . . . . . 7
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥})) |
| 41 | | xpdom1g 8057 |
. . . . . . 7
⊢
((𝒫 {𝑥}
∈ V ∧ 𝐴 ≼
𝒫 (𝐴 ∖ {𝑥})) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) |
| 42 | 28, 40, 41 | sylancr 695 |
. . . . . 6
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) |
| 43 | | endomtr 8014 |
. . . . . 6
⊢ (((𝐴 × 2𝑜)
≈ (𝐴 ×
𝒫 {𝑥}) ∧ (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) → (𝐴 × 2𝑜) ≼
(𝒫 (𝐴 ∖
{𝑥}) × 𝒫
{𝑥})) |
| 44 | 26, 42, 43 | syl2anc 693 |
. . . . 5
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 × 2𝑜) ≼
(𝒫 (𝐴 ∖
{𝑥}) × 𝒫
{𝑥})) |
| 45 | | pwcdaen 9007 |
. . . . . . 7
⊢ (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) |
| 46 | 36, 27, 45 | sylancl 694 |
. . . . . 6
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) |
| 47 | 46 | ensymd 8007 |
. . . . 5
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥})) |
| 48 | | domentr 8015 |
. . . . 5
⊢ (((𝐴 × 2𝑜)
≼ (𝒫 (𝐴
∖ {𝑥}) ×
𝒫 {𝑥}) ∧
(𝒫 (𝐴 ∖
{𝑥}) × 𝒫
{𝑥}) ≈ 𝒫
((𝐴 ∖ {𝑥}) +𝑐 {𝑥})) → (𝐴 × 2𝑜) ≼
𝒫 ((𝐴 ∖
{𝑥}) +𝑐
{𝑥})) |
| 49 | 44, 47, 48 | syl2anc 693 |
. . . 4
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 × 2𝑜) ≼
𝒫 ((𝐴 ∖
{𝑥}) +𝑐
{𝑥})) |
| 50 | 27 | a1i 11 |
. . . . . . 7
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → {𝑥} ∈ V) |
| 51 | | incom 3805 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐴 ∖ {𝑥})) |
| 52 | | disjdif 4040 |
. . . . . . . . 9
⊢ ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅ |
| 53 | 51, 52 | eqtri 2644 |
. . . . . . . 8
⊢ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ |
| 54 | 53 | a1i 11 |
. . . . . . 7
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) |
| 55 | | cdaun 8994 |
. . . . . . 7
⊢ (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V ∧ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 56 | 36, 50, 54, 55 | syl3anc 1326 |
. . . . . 6
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 57 | 56, 34 | breqtrd 4679 |
. . . . 5
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝐴) |
| 58 | | pwen 8133 |
. . . . 5
⊢ (((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝐴 → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝒫 𝐴) |
| 59 | 57, 58 | syl 17 |
. . . 4
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝒫 𝐴) |
| 60 | | domentr 8015 |
. . . 4
⊢ (((𝐴 × 2𝑜)
≼ 𝒫 ((𝐴
∖ {𝑥})
+𝑐 {𝑥})
∧ 𝒫 ((𝐴 ∖
{𝑥}) +𝑐
{𝑥}) ≈ 𝒫
𝐴) → (𝐴 × 2𝑜)
≼ 𝒫 𝐴) |
| 61 | 49, 59, 60 | syl2anc 693 |
. . 3
⊢
((1𝑜 ≺ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 × 2𝑜) ≼
𝒫 𝐴) |
| 62 | 9, 61 | exlimddv 1863 |
. 2
⊢
(1𝑜 ≺ 𝐴 → (𝐴 × 2𝑜) ≼
𝒫 𝐴) |
| 63 | | domtr 8009 |
. 2
⊢ (((𝐴 +𝑐
2𝑜) ≼ (𝐴 × 2𝑜) ∧ (𝐴 × 2𝑜)
≼ 𝒫 𝐴) →
(𝐴 +𝑐
2𝑜) ≼ 𝒫 𝐴) |
| 64 | 3, 62, 63 | syl2anc 693 |
1
⊢
(1𝑜 ≺ 𝐴 → (𝐴 +𝑐
2𝑜) ≼ 𝒫 𝐴) |