| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domunsn | Structured version Visualization version Unicode version | ||
| Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| domunsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdom0 8092 |
. . . . 5
| |
| 2 | breq2 4657 |
. . . . 5
| |
| 3 | 1, 2 | mtbiri 317 |
. . . 4
|
| 4 | 3 | con2i 134 |
. . 3
|
| 5 | neq0 3930 |
. . 3
| |
| 6 | 4, 5 | sylib 208 |
. 2
|
| 7 | domdifsn 8043 |
. . . . 5
| |
| 8 | 7 | adantr 481 |
. . . 4
|
| 9 | vex 3203 |
. . . . . . 7
| |
| 10 | en2sn 8037 |
. . . . . . 7
| |
| 11 | 9, 10 | mpan2 707 |
. . . . . 6
|
| 12 | endom 7982 |
. . . . . 6
| |
| 13 | 11, 12 | syl 17 |
. . . . 5
|
| 14 | snprc 4253 |
. . . . . . 7
| |
| 15 | 14 | biimpi 206 |
. . . . . 6
|
| 16 | snex 4908 |
. . . . . . 7
| |
| 17 | 16 | 0dom 8090 |
. . . . . 6
|
| 18 | 15, 17 | syl6eqbr 4692 |
. . . . 5
|
| 19 | 13, 18 | pm2.61i 176 |
. . . 4
|
| 20 | incom 3805 |
. . . . . 6
| |
| 21 | disjdif 4040 |
. . . . . 6
| |
| 22 | 20, 21 | eqtri 2644 |
. . . . 5
|
| 23 | undom 8048 |
. . . . 5
| |
| 24 | 22, 23 | mpan2 707 |
. . . 4
|
| 25 | 8, 19, 24 | sylancl 694 |
. . 3
|
| 26 | uncom 3757 |
. . . 4
| |
| 27 | simpr 477 |
. . . . . 6
| |
| 28 | 27 | snssd 4340 |
. . . . 5
|
| 29 | undif 4049 |
. . . . 5
| |
| 30 | 28, 29 | sylib 208 |
. . . 4
|
| 31 | 26, 30 | syl5eq 2668 |
. . 3
|
| 32 | 25, 31 | breqtrd 4679 |
. 2
|
| 33 | 6, 32 | exlimddv 1863 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 |
| This theorem is referenced by: canthp1lem1 9474 |
| Copyright terms: Public domain | W3C validator |