| Step | Hyp | Ref
| Expression |
| 1 | | dprdsplit.u |
. . . . . 6
⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
| 2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐼 = (𝐶 ∪ 𝐷)) |
| 3 | 2 | eleq2d 2687 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐼 ↔ 𝑌 ∈ (𝐶 ∪ 𝐷))) |
| 4 | | elun 3753 |
. . . 4
⊢ (𝑌 ∈ (𝐶 ∪ 𝐷) ↔ (𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷)) |
| 5 | 3, 4 | syl6bb 276 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐼 ↔ (𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷))) |
| 6 | | dmdprdsplit2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| 7 | 6 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| 8 | | dprdsplit.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 9 | | ssun1 3776 |
. . . . . . . . . . 11
⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) |
| 10 | 9, 1 | syl5sseqr 3654 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
| 11 | 8, 10 | fssresd 6071 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
| 12 | | fdm 6051 |
. . . . . . . . 9
⊢ ((𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺) → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 14 | 13 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 15 | | simplr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ 𝐶) |
| 16 | | simprl 794 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ 𝐶) |
| 17 | | simprr 796 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ≠ 𝑌) |
| 18 | | dmdprdsplit.z |
. . . . . . 7
⊢ 𝑍 = (Cntz‘𝐺) |
| 19 | 7, 14, 15, 16, 17, 18 | dprdcntz 18407 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑋) ⊆ (𝑍‘((𝑆 ↾ 𝐶)‘𝑌))) |
| 20 | | fvres 6207 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐶 → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
| 21 | 20 | ad2antlr 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
| 22 | | fvres 6207 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝐶 → ((𝑆 ↾ 𝐶)‘𝑌) = (𝑆‘𝑌)) |
| 23 | 22 | ad2antrl 764 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑌) = (𝑆‘𝑌)) |
| 24 | 23 | fveq2d 6195 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → (𝑍‘((𝑆 ↾ 𝐶)‘𝑌)) = (𝑍‘(𝑆‘𝑌))) |
| 25 | 19, 21, 24 | 3sstr3d 3647 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐶 ∧ 𝑋 ≠ 𝑌)) → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) |
| 26 | 25 | exp32 631 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐶 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))))) |
| 27 | 20 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
| 28 | 6 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| 29 | 13 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 30 | | simplr 792 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ 𝐶) |
| 31 | 28, 29, 30 | dprdub 18424 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
| 32 | 27, 31 | eqsstr3d 3640 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
| 33 | | dmdprdsplit2.3 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 34 | 33 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 35 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 36 | 35 | dprdssv 18415 |
. . . . . . . 8
⊢ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (Base‘𝐺) |
| 37 | | fvres 6207 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝐷 → ((𝑆 ↾ 𝐷)‘𝑌) = (𝑆‘𝑌)) |
| 38 | 37 | ad2antrl 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐷)‘𝑌) = (𝑆‘𝑌)) |
| 39 | | dmdprdsplit2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
| 40 | 39 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
| 41 | | ssun2 3777 |
. . . . . . . . . . . . . 14
⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) |
| 42 | 41, 1 | syl5sseqr 3654 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
| 43 | 8, 42 | fssresd 6071 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
| 44 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ ((𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺) → dom (𝑆 ↾ 𝐷) = 𝐷) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
| 46 | 45 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → dom (𝑆 ↾ 𝐷) = 𝐷) |
| 47 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ 𝐷) |
| 48 | 40, 46, 47 | dprdub 18424 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑆 ↾ 𝐷)‘𝑌) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
| 49 | 38, 48 | eqsstr3d 3640 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝑆‘𝑌) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
| 50 | 35, 18 | cntz2ss 17765 |
. . . . . . . 8
⊢ (((𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (Base‘𝐺) ∧ (𝑆‘𝑌) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) → (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝑍‘(𝑆‘𝑌))) |
| 51 | 36, 49, 50 | sylancr 695 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ (𝑍‘(𝑆‘𝑌))) |
| 52 | 34, 51 | sstrd 3613 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝑆‘𝑌))) |
| 53 | 32, 52 | sstrd 3613 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) |
| 54 | 53 | exp32 631 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐷 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))))) |
| 55 | 26, 54 | jaod 395 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑌 ∈ 𝐶 ∨ 𝑌 ∈ 𝐷) → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))))) |
| 56 | 5, 55 | sylbid 230 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑌 ∈ 𝐼 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))))) |
| 57 | | dprdgrp 18404 |
. . . . . . . 8
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → 𝐺 ∈ Grp) |
| 58 | 6, 57 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 59 | 58 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐺 ∈ Grp) |
| 60 | 35 | subgacs 17629 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
| 61 | | acsmre 16313 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 62 | 59, 60, 61 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 63 | | difundir 3880 |
. . . . . . . . . . 11
⊢ ((𝐶 ∪ 𝐷) ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋})) |
| 64 | 2 | difeq1d 3727 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶 ∪ 𝐷) ∖ {𝑋})) |
| 65 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) |
| 66 | 65 | snssd 4340 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {𝑋} ⊆ 𝐶) |
| 67 | | sslin 3839 |
. . . . . . . . . . . . . . 15
⊢ ({𝑋} ⊆ 𝐶 → (𝐷 ∩ {𝑋}) ⊆ (𝐷 ∩ 𝐶)) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐷 ∩ {𝑋}) ⊆ (𝐷 ∩ 𝐶)) |
| 69 | | incom 3805 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∩ 𝐷) = (𝐷 ∩ 𝐶) |
| 70 | | dprdsplit.i |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐶 ∩ 𝐷) = ∅) |
| 72 | 69, 71 | syl5eqr 2670 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐷 ∩ 𝐶) = ∅) |
| 73 | | sseq0 3975 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∩ {𝑋}) ⊆ (𝐷 ∩ 𝐶) ∧ (𝐷 ∩ 𝐶) = ∅) → (𝐷 ∩ {𝑋}) = ∅) |
| 74 | 68, 72, 73 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐷 ∩ {𝑋}) = ∅) |
| 75 | | disj3 4021 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∩ {𝑋}) = ∅ ↔ 𝐷 = (𝐷 ∖ {𝑋})) |
| 76 | 74, 75 | sylib 208 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐷 = (𝐷 ∖ {𝑋})) |
| 77 | 76 | uneq2d 3767 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐶 ∖ {𝑋}) ∪ 𝐷) = ((𝐶 ∖ {𝑋}) ∪ (𝐷 ∖ {𝑋}))) |
| 78 | 63, 64, 77 | 3eqtr4a 2682 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐼 ∖ {𝑋}) = ((𝐶 ∖ {𝑋}) ∪ 𝐷)) |
| 79 | 78 | imaeq2d 5466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷))) |
| 80 | | imaundi 5545 |
. . . . . . . . 9
⊢ (𝑆 “ ((𝐶 ∖ {𝑋}) ∪ 𝐷)) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆 “ 𝐷)) |
| 81 | 79, 80 | syl6eq 2672 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆 “ (𝐼 ∖ {𝑋})) = ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆 “ 𝐷))) |
| 82 | 81 | unieqd 4446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐼 ∖ {𝑋})) = ∪ ((𝑆 “ (𝐶 ∖ {𝑋})) ∪ (𝑆 “ 𝐷))) |
| 83 | | uniun 4456 |
. . . . . . 7
⊢ ∪ ((𝑆
“ (𝐶 ∖ {𝑋})) ∪ (𝑆 “ 𝐷)) = (∪ (𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷)) |
| 84 | 82, 83 | syl6eq 2672 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐼 ∖ {𝑋})) = (∪ (𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷))) |
| 85 | | dmdprdsplit2lem.k |
. . . . . . . . 9
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
| 86 | | difss 3737 |
. . . . . . . . . . 11
⊢ (𝐶 ∖ {𝑋}) ⊆ 𝐶 |
| 87 | | imass2 5501 |
. . . . . . . . . . 11
⊢ ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆 “ 𝐶)) |
| 88 | | uniss 4458 |
. . . . . . . . . . 11
⊢ ((𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑆 “ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ ∪
(𝑆 “ 𝐶)) |
| 89 | 86, 87, 88 | mp2b 10 |
. . . . . . . . . 10
⊢ ∪ (𝑆
“ (𝐶 ∖ {𝑋})) ⊆ ∪ (𝑆
“ 𝐶) |
| 90 | | imassrn 5477 |
. . . . . . . . . . . 12
⊢ (𝑆 “ 𝐶) ⊆ ran 𝑆 |
| 91 | | frn 6053 |
. . . . . . . . . . . . . . 15
⊢ (𝑆:𝐼⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
| 92 | 8, 91 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
| 93 | 92 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
| 94 | | mresspw 16252 |
. . . . . . . . . . . . . 14
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
| 95 | 62, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
| 96 | 93, 95 | sstrd 3613 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺)) |
| 97 | 90, 96 | syl5ss 3614 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆 “ 𝐶) ⊆ 𝒫 (Base‘𝐺)) |
| 98 | | sspwuni 4611 |
. . . . . . . . . . 11
⊢ ((𝑆 “ 𝐶) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ (𝑆
“ 𝐶) ⊆
(Base‘𝐺)) |
| 99 | 97, 98 | sylib 208 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ 𝐶) ⊆ (Base‘𝐺)) |
| 100 | 89, 99 | syl5ss 3614 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺)) |
| 101 | 62, 85, 100 | mrcssidd 16285 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) |
| 102 | | imassrn 5477 |
. . . . . . . . . . . 12
⊢ (𝑆 “ 𝐷) ⊆ ran 𝑆 |
| 103 | 102, 96 | syl5ss 3614 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆 “ 𝐷) ⊆ 𝒫 (Base‘𝐺)) |
| 104 | | sspwuni 4611 |
. . . . . . . . . . 11
⊢ ((𝑆 “ 𝐷) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ (𝑆
“ 𝐷) ⊆
(Base‘𝐺)) |
| 105 | 103, 104 | sylib 208 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ 𝐷) ⊆ (Base‘𝐺)) |
| 106 | 62, 85, 105 | mrcssidd 16285 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ 𝐷) ⊆ (𝐾‘∪ (𝑆 “ 𝐷))) |
| 107 | 85 | dprdspan 18426 |
. . . . . . . . . . . 12
⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) = (𝐾‘∪ ran
(𝑆 ↾ 𝐷))) |
| 108 | 39, 107 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) = (𝐾‘∪ ran
(𝑆 ↾ 𝐷))) |
| 109 | | df-ima 5127 |
. . . . . . . . . . . . 13
⊢ (𝑆 “ 𝐷) = ran (𝑆 ↾ 𝐷) |
| 110 | 109 | unieqi 4445 |
. . . . . . . . . . . 12
⊢ ∪ (𝑆
“ 𝐷) = ∪ ran (𝑆 ↾ 𝐷) |
| 111 | 110 | fveq2i 6194 |
. . . . . . . . . . 11
⊢ (𝐾‘∪ (𝑆
“ 𝐷)) = (𝐾‘∪ ran (𝑆 ↾ 𝐷)) |
| 112 | 108, 111 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) = (𝐾‘∪ (𝑆 “ 𝐷))) |
| 113 | 112 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐷)) = (𝐾‘∪ (𝑆 “ 𝐷))) |
| 114 | 106, 113 | sseqtr4d 3642 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ 𝐷) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) |
| 115 | | unss12 3785 |
. . . . . . . 8
⊢ ((∪ (𝑆
“ (𝐶 ∖ {𝑋})) ⊆ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∧ ∪
(𝑆 “ 𝐷) ⊆ (𝐺 DProd (𝑆 ↾ 𝐷))) → (∪
(𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷)) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 116 | 101, 114,
115 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (∪
(𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷)) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 117 | 85 | mrccl 16271 |
. . . . . . . . 9
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (Base‘𝐺)) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) |
| 118 | 62, 100, 117 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) |
| 119 | | dprdsubg 18423 |
. . . . . . . . . 10
⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
| 120 | 39, 119 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
| 121 | 120 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
| 122 | | eqid 2622 |
. . . . . . . . 9
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
| 123 | 122 | lsmunss 18073 |
. . . . . . . 8
⊢ (((𝐾‘∪ (𝑆
“ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) → ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 124 | 118, 121,
123 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∪ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 125 | 116, 124 | sstrd 3613 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (∪
(𝑆 “ (𝐶 ∖ {𝑋})) ∪ ∪
(𝑆 “ 𝐷)) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 126 | 84, 125 | eqsstrd 3639 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 127 | 89 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ ∪
(𝑆 “ 𝐶)) |
| 128 | 62, 85, 127, 99 | mrcssd 16284 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐾‘∪ (𝑆 “ 𝐶))) |
| 129 | 85 | dprdspan 18426 |
. . . . . . . . . . 11
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) = (𝐾‘∪ ran
(𝑆 ↾ 𝐶))) |
| 130 | 6, 129 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) = (𝐾‘∪ ran
(𝑆 ↾ 𝐶))) |
| 131 | | df-ima 5127 |
. . . . . . . . . . . 12
⊢ (𝑆 “ 𝐶) = ran (𝑆 ↾ 𝐶) |
| 132 | 131 | unieqi 4445 |
. . . . . . . . . . 11
⊢ ∪ (𝑆
“ 𝐶) = ∪ ran (𝑆 ↾ 𝐶) |
| 133 | 132 | fveq2i 6194 |
. . . . . . . . . 10
⊢ (𝐾‘∪ (𝑆
“ 𝐶)) = (𝐾‘∪ ran (𝑆 ↾ 𝐶)) |
| 134 | 130, 133 | syl6eqr 2674 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) = (𝐾‘∪ (𝑆 “ 𝐶))) |
| 135 | 134 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) = (𝐾‘∪ (𝑆 “ 𝐶))) |
| 136 | 128, 135 | sseqtr4d 3642 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
| 137 | 33 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 138 | 136, 137 | sstrd 3613 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 139 | 122, 18 | lsmsubg 18069 |
. . . . . 6
⊢ (((𝐾‘∪ (𝑆
“ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) → ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
| 140 | 118, 121,
138, 139 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
| 141 | 85 | mrcsscl 16280 |
. . . . 5
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐼 ∖ {𝑋})) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 142 | 62, 126, 140, 141 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 143 | | sslin 3839 |
. . . 4
⊢ ((𝐾‘∪ (𝑆
“ (𝐼 ∖ {𝑋}))) ⊆ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))) → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆‘𝑋) ∩ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))))) |
| 144 | 142, 143 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ ((𝑆‘𝑋) ∩ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷))))) |
| 145 | 10 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐼) |
| 146 | 8 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐼) → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
| 147 | 145, 146 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
| 148 | | dmdprdsplit.0 |
. . . 4
⊢ 0 =
(0g‘𝐺) |
| 149 | 20 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
| 150 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| 151 | 13 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 152 | 150, 151,
65 | dprdub 18424 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
| 153 | 149, 152 | eqsstr3d 3640 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
| 154 | | dprdsubg 18423 |
. . . . . . . . . . 11
⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
| 155 | 6, 154 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
| 156 | 155 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
| 157 | 122 | lsmlub 18078 |
. . . . . . . . 9
⊢ (((𝑆‘𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) → (((𝑆‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) ↔ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)))) |
| 158 | 147, 118,
156, 157 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆‘𝑋) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) ↔ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)))) |
| 159 | 153, 136,
158 | mpbi2and 956 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶))) |
| 160 | | ssrin 3838 |
. . . . . . 7
⊢ (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ⊆ (𝐺 DProd (𝑆 ↾ 𝐶)) → (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 161 | 159, 160 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 162 | | dmdprdsplit2.4 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
| 163 | 162 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
| 164 | 161, 163 | sseqtrd 3641 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) ⊆ { 0 }) |
| 165 | 122 | lsmub1 18071 |
. . . . . . . . 9
⊢ (((𝑆‘𝑋) ∈ (SubGrp‘𝐺) ∧ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) → (𝑆‘𝑋) ⊆ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
| 166 | 147, 118,
165 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ⊆ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
| 167 | 148 | subg0cl 17602 |
. . . . . . . . 9
⊢ ((𝑆‘𝑋) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆‘𝑋)) |
| 168 | 147, 167 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 0 ∈ (𝑆‘𝑋)) |
| 169 | 166, 168 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 0 ∈ ((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
| 170 | 148 | subg0cl 17602 |
. . . . . . . 8
⊢ ((𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) |
| 171 | 121, 170 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 0 ∈ (𝐺 DProd (𝑆 ↾ 𝐷))) |
| 172 | 169, 171 | elind 3798 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 0 ∈ (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 173 | 172 | snssd 4340 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → { 0 } ⊆ (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 174 | 164, 173 | eqssd 3620 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆‘𝑋)(LSSum‘𝐺)(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
| 175 | | resima2 5432 |
. . . . . . . . 9
⊢ ((𝐶 ∖ {𝑋}) ⊆ 𝐶 → ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋}))) |
| 176 | 86, 175 | mp1i 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})) = (𝑆 “ (𝐶 ∖ {𝑋}))) |
| 177 | 176 | unieqd 4446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪
((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})) = ∪ (𝑆 “ (𝐶 ∖ {𝑋}))) |
| 178 | 177 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋}))) = (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) |
| 179 | 149, 178 | ineq12d 3815 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆 ↾ 𝐶)‘𝑋) ∩ (𝐾‘∪ ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})))) = ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
| 180 | 150, 151,
65, 148, 85 | dprddisj 18408 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (((𝑆 ↾ 𝐶)‘𝑋) ∩ (𝐾‘∪ ((𝑆 ↾ 𝐶) “ (𝐶 ∖ {𝑋})))) = { 0 }) |
| 181 | 179, 180 | eqtr3d 2658 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))) = { 0 }) |
| 182 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 183 | | ffun 6048 |
. . . . . . . 8
⊢ (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆) |
| 184 | | funiunfv 6506 |
. . . . . . . 8
⊢ (Fun
𝑆 → ∪ 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) = ∪ (𝑆 “ (𝐶 ∖ {𝑋}))) |
| 185 | 182, 183,
184 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪
𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) = ∪ (𝑆 “ (𝐶 ∖ {𝑋}))) |
| 186 | 6 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| 187 | 13 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 188 | | eldifi 3732 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦 ∈ 𝐶) |
| 189 | 188 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦 ∈ 𝐶) |
| 190 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑋 ∈ 𝐶) |
| 191 | | eldifsni 4320 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐶 ∖ {𝑋}) → 𝑦 ≠ 𝑋) |
| 192 | 191 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
| 193 | 186, 187,
189, 190, 192, 18 | dprdcntz 18407 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆 ↾ 𝐶)‘𝑦) ⊆ (𝑍‘((𝑆 ↾ 𝐶)‘𝑋))) |
| 194 | | fvres 6207 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐶 → ((𝑆 ↾ 𝐶)‘𝑦) = (𝑆‘𝑦)) |
| 195 | 189, 194 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆 ↾ 𝐶)‘𝑦) = (𝑆‘𝑦)) |
| 196 | 20 | ad2antlr 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → ((𝑆 ↾ 𝐶)‘𝑋) = (𝑆‘𝑋)) |
| 197 | 196 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑍‘((𝑆 ↾ 𝐶)‘𝑋)) = (𝑍‘(𝑆‘𝑋))) |
| 198 | 193, 195,
197 | 3sstr3d 3647 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐶) ∧ 𝑦 ∈ (𝐶 ∖ {𝑋})) → (𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋))) |
| 199 | 198 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋))) |
| 200 | | iunss 4561 |
. . . . . . . 8
⊢ (∪ 𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋))) |
| 201 | 199, 200 | sylibr 224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪
𝑦 ∈ (𝐶 ∖ {𝑋})(𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑋))) |
| 202 | 185, 201 | eqsstr3d 3640 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆‘𝑋))) |
| 203 | 35 | subgss 17595 |
. . . . . . . 8
⊢ ((𝑆‘𝑋) ∈ (SubGrp‘𝐺) → (𝑆‘𝑋) ⊆ (Base‘𝐺)) |
| 204 | 147, 203 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ⊆ (Base‘𝐺)) |
| 205 | 35, 18 | cntzsubg 17769 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑆‘𝑋) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆‘𝑋)) ∈ (SubGrp‘𝐺)) |
| 206 | 59, 204, 205 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑍‘(𝑆‘𝑋)) ∈ (SubGrp‘𝐺)) |
| 207 | 85 | mrcsscl 16280 |
. . . . . 6
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐶 ∖ {𝑋})) ⊆ (𝑍‘(𝑆‘𝑋)) ∧ (𝑍‘(𝑆‘𝑋)) ∈ (SubGrp‘𝐺)) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆‘𝑋))) |
| 208 | 62, 202, 206, 207 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))) ⊆ (𝑍‘(𝑆‘𝑋))) |
| 209 | 18, 118, 147, 208 | cntzrecd 18091 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝑆‘𝑋) ⊆ (𝑍‘(𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋}))))) |
| 210 | 122, 147,
118, 121, 148, 174, 181, 18, 209 | lsmdisj3 18096 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋) ∩ ((𝐾‘∪ (𝑆 “ (𝐶 ∖ {𝑋})))(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ 𝐷)))) = { 0 }) |
| 211 | 144, 210 | sseqtrd 3641 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 }) |
| 212 | 56, 211 | jca 554 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑌 ∈ 𝐼 → (𝑋 ≠ 𝑌 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌)))) ∧ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) ⊆ { 0 })) |