MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2da Structured version   Visualization version   GIF version

Theorem dprd2da 18441
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprd2da (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2da
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2622 . 2 (0g𝐺) = (0g𝐺)
3 dprd2d.k . 2 𝐾 = (mrCls‘(SubGrp‘𝐺))
4 dprd2d.5 . . 3 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
5 dprdgrp 18404 . . 3 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 resiun2 5418 . . . . 5 (𝐴 𝑖𝐼 {𝑖}) = 𝑖𝐼 (𝐴 ↾ {𝑖})
8 iunid 4575 . . . . . 6 𝑖𝐼 {𝑖} = 𝐼
98reseq2i 5393 . . . . 5 (𝐴 𝑖𝐼 {𝑖}) = (𝐴𝐼)
107, 9eqtr3i 2646 . . . 4 𝑖𝐼 (𝐴 ↾ {𝑖}) = (𝐴𝐼)
11 dprd2d.1 . . . . 5 (𝜑 → Rel 𝐴)
12 dprd2d.3 . . . . 5 (𝜑 → dom 𝐴𝐼)
13 relssres 5437 . . . . 5 ((Rel 𝐴 ∧ dom 𝐴𝐼) → (𝐴𝐼) = 𝐴)
1411, 12, 13syl2anc 693 . . . 4 (𝜑 → (𝐴𝐼) = 𝐴)
1510, 14syl5eq 2668 . . 3 (𝜑 𝑖𝐼 (𝐴 ↾ {𝑖}) = 𝐴)
16 ovex 6678 . . . . . 6 (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ V
17 eqid 2622 . . . . . 6 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
1816, 17dmmpti 6023 . . . . 5 dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼
19 reldmdprd 18396 . . . . . . 7 Rel dom DProd
2019brrelex2i 5159 . . . . . 6 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
21 dmexg 7097 . . . . . 6 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
224, 20, 213syl 18 . . . . 5 (𝜑 → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
2318, 22syl5eqelr 2706 . . . 4 (𝜑𝐼 ∈ V)
24 ressn 5671 . . . . . 6 (𝐴 ↾ {𝑖}) = ({𝑖} × (𝐴 “ {𝑖}))
25 snex 4908 . . . . . . 7 {𝑖} ∈ V
26 ovex 6678 . . . . . . . . 9 (𝑖𝑆𝑗) ∈ V
27 eqid 2622 . . . . . . . . 9 (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))
2826, 27dmmpti 6023 . . . . . . . 8 dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖})
29 dprd2d.4 . . . . . . . . 9 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
3019brrelex2i 5159 . . . . . . . . 9 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
31 dmexg 7097 . . . . . . . . 9 ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
3229, 30, 313syl 18 . . . . . . . 8 ((𝜑𝑖𝐼) → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
3328, 32syl5eqelr 2706 . . . . . . 7 ((𝜑𝑖𝐼) → (𝐴 “ {𝑖}) ∈ V)
34 xpexg 6960 . . . . . . 7 (({𝑖} ∈ V ∧ (𝐴 “ {𝑖}) ∈ V) → ({𝑖} × (𝐴 “ {𝑖})) ∈ V)
3525, 33, 34sylancr 695 . . . . . 6 ((𝜑𝑖𝐼) → ({𝑖} × (𝐴 “ {𝑖})) ∈ V)
3624, 35syl5eqel 2705 . . . . 5 ((𝜑𝑖𝐼) → (𝐴 ↾ {𝑖}) ∈ V)
3736ralrimiva 2966 . . . 4 (𝜑 → ∀𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
38 iunexg 7143 . . . 4 ((𝐼 ∈ V ∧ ∀𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V) → 𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
3923, 37, 38syl2anc 693 . . 3 (𝜑 𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
4015, 39eqeltrrd 2702 . 2 (𝜑𝐴 ∈ V)
41 dprd2d.2 . 2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
4212adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom 𝐴𝐼)
43 1stdm 7215 . . . . . . . . . 10 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
4411, 43sylan 488 . . . . . . . . 9 ((𝜑𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
4542, 44sseldd 3604 . . . . . . . 8 ((𝜑𝑥𝐴) → (1st𝑥) ∈ 𝐼)
4629ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
4746adantr 481 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
48 sneq 4187 . . . . . . . . . . . 12 (𝑖 = (1st𝑥) → {𝑖} = {(1st𝑥)})
4948imaeq2d 5466 . . . . . . . . . . 11 (𝑖 = (1st𝑥) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑥)}))
50 oveq1 6657 . . . . . . . . . . 11 (𝑖 = (1st𝑥) → (𝑖𝑆𝑗) = ((1st𝑥)𝑆𝑗))
5149, 50mpteq12dv 4733 . . . . . . . . . 10 (𝑖 = (1st𝑥) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
5251breq2d 4665 . . . . . . . . 9 (𝑖 = (1st𝑥) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
5352rspcv 3305 . . . . . . . 8 ((1st𝑥) ∈ 𝐼 → (∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
5445, 47, 53sylc 65 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
55543ad2antr1 1226 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
5655adantr 481 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
57 ovex 6678 . . . . . . 7 ((1st𝑥)𝑆𝑗) ∈ V
58 eqid 2622 . . . . . . 7 (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
5957, 58dmmpti 6023 . . . . . 6 dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)})
6059a1i 11 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)}))
61 1st2nd 7214 . . . . . . . . . . 11 ((Rel 𝐴𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6211, 61sylan 488 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
63 simpr 477 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
6462, 63eqeltrrd 2702 . . . . . . . . 9 ((𝜑𝑥𝐴) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
65 df-br 4654 . . . . . . . . 9 ((1st𝑥)𝐴(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
6664, 65sylibr 224 . . . . . . . 8 ((𝜑𝑥𝐴) → (1st𝑥)𝐴(2nd𝑥))
6711adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → Rel 𝐴)
68 elrelimasn 5489 . . . . . . . . 9 (Rel 𝐴 → ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴(2nd𝑥)))
6967, 68syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴(2nd𝑥)))
7066, 69mpbird 247 . . . . . . 7 ((𝜑𝑥𝐴) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
71703ad2antr1 1226 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
7271adantr 481 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
7311adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → Rel 𝐴)
74 simpr2 1068 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦𝐴)
75 1st2nd 7214 . . . . . . . . . . 11 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
7673, 74, 75syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
7776, 74eqeltrrd 2702 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
78 df-br 4654 . . . . . . . . 9 ((1st𝑦)𝐴(2nd𝑦) ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
7977, 78sylibr 224 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦)𝐴(2nd𝑦))
80 elrelimasn 5489 . . . . . . . . 9 (Rel 𝐴 → ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) ↔ (1st𝑦)𝐴(2nd𝑦)))
8173, 80syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) ↔ (1st𝑦)𝐴(2nd𝑦)))
8279, 81mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}))
8382adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}))
84 simpr 477 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (1st𝑥) = (1st𝑦))
8584sneqd 4189 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → {(1st𝑥)} = {(1st𝑦)})
8685imaeq2d 5466 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝐴 “ {(1st𝑥)}) = (𝐴 “ {(1st𝑦)}))
8783, 86eleqtrrd 2704 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
88 simplr3 1105 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → 𝑥𝑦)
89 simpr1 1067 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥𝐴)
9073, 89, 61syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
9190, 76eqeq12d 2637 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥 = 𝑦 ↔ ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩))
92 fvex 6201 . . . . . . . . . 10 (1st𝑥) ∈ V
93 fvex 6201 . . . . . . . . . 10 (2nd𝑥) ∈ V
9492, 93opth 4945 . . . . . . . . 9 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩ ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
9591, 94syl6bb 276 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥 = 𝑦 ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
9695baibd 948 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑥 = 𝑦 ↔ (2nd𝑥) = (2nd𝑦)))
9796necon3bid 2838 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑥𝑦 ↔ (2nd𝑥) ≠ (2nd𝑦)))
9888, 97mpbid 222 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑥) ≠ (2nd𝑦))
9956, 60, 72, 87, 98, 1dprdcntz 18407 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ⊆ ((Cntz‘𝐺)‘((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦))))
100 df-ov 6653 . . . . . 6 ((1st𝑥)𝑆(2nd𝑥)) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩)
101 oveq2 6658 . . . . . . . 8 (𝑗 = (2nd𝑥) → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆(2nd𝑥)))
102101, 58, 57fvmpt3i 6287 . . . . . . 7 ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
10371, 102syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
10490fveq2d 6195 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩))
105100, 103, 1043eqtr4a 2682 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
106105adantr 481 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
10784oveq1d 6665 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((1st𝑥)𝑆𝑗) = ((1st𝑦)𝑆𝑗))
10886, 107mpteq12dv 4733 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
109108fveq1d 6193 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦)) = ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)))
110 df-ov 6653 . . . . . . . 8 ((1st𝑦)𝑆(2nd𝑦)) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩)
111 oveq2 6658 . . . . . . . . . 10 (𝑗 = (2nd𝑦) → ((1st𝑦)𝑆𝑗) = ((1st𝑦)𝑆(2nd𝑦)))
112 eqid 2622 . . . . . . . . . 10 (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))
113 ovex 6678 . . . . . . . . . 10 ((1st𝑦)𝑆𝑗) ∈ V
114111, 112, 113fvmpt3i 6287 . . . . . . . . 9 ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = ((1st𝑦)𝑆(2nd𝑦)))
11582, 114syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = ((1st𝑦)𝑆(2nd𝑦)))
11676fveq2d 6195 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑦) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩))
117110, 115, 1163eqtr4a 2682 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
118117adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
119109, 118eqtrd 2656 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
120119fveq2d 6195 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((Cntz‘𝐺)‘((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦))) = ((Cntz‘𝐺)‘(𝑆𝑦)))
12199, 106, 1203sstr3d 3647 . . 3 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
12211, 41, 12, 29, 4, 3dprd2dlem2 18439 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
12351oveq2d 6666 . . . . . . . . 9 (𝑖 = (1st𝑥) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
124123, 17, 16fvmpt3i 6287 . . . . . . . 8 ((1st𝑥) ∈ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
12545, 124syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
126122, 125sseqtr4d 3642 . . . . . 6 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
1271263ad2antr1 1226 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
128127adantr 481 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
1294ad2antrr 762 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → 𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
13018a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
131453ad2antr1 1226 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑥) ∈ 𝐼)
132131adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑥) ∈ 𝐼)
13312adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → dom 𝐴𝐼)
134 1stdm 7215 . . . . . . . . 9 ((Rel 𝐴𝑦𝐴) → (1st𝑦) ∈ dom 𝐴)
13573, 74, 134syl2anc 693 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦) ∈ dom 𝐴)
136133, 135sseldd 3604 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦) ∈ 𝐼)
137136adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑦) ∈ 𝐼)
138 simpr 477 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑥) ≠ (1st𝑦))
139129, 130, 132, 137, 138, 1dprdcntz 18407 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ⊆ ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))))
140 sneq 4187 . . . . . . . . . . . . 13 (𝑖 = (1st𝑦) → {𝑖} = {(1st𝑦)})
141140imaeq2d 5466 . . . . . . . . . . . 12 (𝑖 = (1st𝑦) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑦)}))
142 oveq1 6657 . . . . . . . . . . . 12 (𝑖 = (1st𝑦) → (𝑖𝑆𝑗) = ((1st𝑦)𝑆𝑗))
143141, 142mpteq12dv 4733 . . . . . . . . . . 11 (𝑖 = (1st𝑦) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
144143oveq2d 6666 . . . . . . . . . 10 (𝑖 = (1st𝑦) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
145144, 17, 16fvmpt3i 6287 . . . . . . . . 9 ((1st𝑦) ∈ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
146136, 145syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
147146fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) = ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))))
148 eqid 2622 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
149148dprdssv 18415 . . . . . . . 8 (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))) ⊆ (Base‘𝐺)
15046adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
151143breq2d 4665 . . . . . . . . . . . 12 (𝑖 = (1st𝑦) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
152151rspcv 3305 . . . . . . . . . . 11 ((1st𝑦) ∈ 𝐼 → (∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
153136, 150, 152sylc 65 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
154113, 112dmmpti 6023 . . . . . . . . . . 11 dom (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝐴 “ {(1st𝑦)})
155154a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → dom (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝐴 “ {(1st𝑦)}))
156153, 155, 82dprdub 18424 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
157117, 156eqsstr3d 3640 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑦) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
158148, 1cntz2ss 17765 . . . . . . . 8 (((𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))) ⊆ (Base‘𝐺) ∧ (𝑆𝑦) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) → ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
159149, 157, 158sylancr 695 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
160147, 159eqsstrd 3639 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
161160adantr 481 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
162139, 161sstrd 3613 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
163128, 162sstrd 3613 . . 3 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
164121, 163pm2.61dane 2881 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
1656adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐺 ∈ Grp)
166148subgacs 17629 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
167 acsmre 16313 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
168165, 166, 1673syl 18 . . . . 5 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
16914adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐴𝐼) = 𝐴)
170 undif2 4044 . . . . . . . . . . . . . . . . . 18 ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)})) = ({(1st𝑥)} ∪ 𝐼)
17145snssd 4340 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → {(1st𝑥)} ⊆ 𝐼)
172 ssequn1 3783 . . . . . . . . . . . . . . . . . . 19 ({(1st𝑥)} ⊆ 𝐼 ↔ ({(1st𝑥)} ∪ 𝐼) = 𝐼)
173171, 172sylib 208 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ({(1st𝑥)} ∪ 𝐼) = 𝐼)
174170, 173syl5req 2669 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐼 = ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)})))
175174reseq2d 5396 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐴𝐼) = (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))))
176169, 175eqtr3d 2658 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐴 = (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))))
177 resundi 5410 . . . . . . . . . . . . . . 15 (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))) = ((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
178176, 177syl6eq 2672 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐴 = ((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
179178difeq1d 3727 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ∖ {𝑥}))
180 difundir 3880 . . . . . . . . . . . . 13 (((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
181179, 180syl6eq 2672 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥})))
182 neirr 2803 . . . . . . . . . . . . . . . . 17 ¬ (1st𝑥) ≠ (1st𝑥)
18362eleq1d 2686 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
184 df-br 4654 . . . . . . . . . . . . . . . . . . 19 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
18593brres 5402 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) ↔ ((1st𝑥)𝐴(2nd𝑥) ∧ (1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)})))
186185simprbi 480 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) → (1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)}))
187 eldifsni 4320 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)}) → (1st𝑥) ≠ (1st𝑥))
188186, 187syl 17 . . . . . . . . . . . . . . . . . . 19 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) → (1st𝑥) ≠ (1st𝑥))
189184, 188sylbir 225 . . . . . . . . . . . . . . . . . 18 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) → (1st𝑥) ≠ (1st𝑥))
190183, 189syl6bi 243 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) → (1st𝑥) ≠ (1st𝑥)))
191182, 190mtoi 190 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ¬ 𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
192 disjsn 4246 . . . . . . . . . . . . . . . 16 (((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
193191, 192sylibr 224 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅)
194 disj3 4021 . . . . . . . . . . . . . . 15 (((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅ ↔ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) = ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
195193, 194sylib 208 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) = ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
196195eqcomd 2628 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}) = (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
197196uneq2d 3767 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥})) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
198181, 197eqtrd 2656 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
199198imaeq2d 5466 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = (𝑆 “ (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
200 imaundi 5545 . . . . . . . . . 10 (𝑆 “ (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
201199, 200syl6eq 2672 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
202201unieqd 4446 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
203 uniun 4456 . . . . . . . 8 ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
204202, 203syl6eq 2672 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
205 imassrn 5477 . . . . . . . . . . 11 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran 𝑆
206 frn 6053 . . . . . . . . . . . . . 14 (𝑆:𝐴⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺))
20741, 206syl 17 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
208207adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ (SubGrp‘𝐺))
209 mresspw 16252 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
210168, 209syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
211208, 210sstrd 3613 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
212205, 211syl5ss 3614 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
213 sspwuni 4611 . . . . . . . . . 10 ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺))
214212, 213sylib 208 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺))
215168, 3, 214mrcssidd 16285 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
216 imassrn 5477 . . . . . . . . . . 11 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ ran 𝑆
217216, 211syl5ss 3614 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ 𝒫 (Base‘𝐺))
218 sspwuni 4611 . . . . . . . . . 10 ((𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺))
219217, 218sylib 208 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺))
220168, 3, 219mrcssidd 16285 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
221 unss12 3785 . . . . . . . 8 (( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∧ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) → ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
222215, 220, 221syl2anc 693 . . . . . . 7 ((𝜑𝑥𝐴) → ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
223204, 222eqsstrd 3639 . . . . . 6 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
2243mrccl 16271 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
225168, 214, 224syl2anc 693 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
2263mrccl 16271 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺))
227168, 219, 226syl2anc 693 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺))
228 eqid 2622 . . . . . . . 8 (LSSum‘𝐺) = (LSSum‘𝐺)
229228lsmunss 18073 . . . . . . 7 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺)) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
230225, 227, 229syl2anc 693 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
231223, 230sstrd 3613 . . . . 5 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
232 difss 3737 . . . . . . . . . . . . 13 ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ (𝐴 ↾ {(1st𝑥)})
233 ressn 5671 . . . . . . . . . . . . 13 (𝐴 ↾ {(1st𝑥)}) = ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))
234232, 233sseqtri 3637 . . . . . . . . . . . 12 ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))
235 imass2 5501 . . . . . . . . . . . 12 (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))))
236234, 235ax-mp 5 . . . . . . . . . . 11 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})))
237 ovex 6678 . . . . . . . . . . . . . . . 16 ((1st𝑥)𝑆𝑖) ∈ V
238 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆𝑖))
23958, 238elrnmpt1s 5373 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (𝐴 “ {(1st𝑥)}) ∧ ((1st𝑥)𝑆𝑖) ∈ V) → ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
240237, 239mpan2 707 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝐴 “ {(1st𝑥)}) → ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
241240rgen 2922 . . . . . . . . . . . . . 14 𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
242241a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
243 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑦 = (1st𝑥) → (𝑦𝑆𝑖) = ((1st𝑥)𝑆𝑖))
244243eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑦 = (1st𝑥) → ((𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
245244ralbidv 2986 . . . . . . . . . . . . . 14 (𝑦 = (1st𝑥) → (∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
24692, 245ralsn 4222 . . . . . . . . . . . . 13 (∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
247242, 246sylibr 224 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
24841adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑆:𝐴⟶(SubGrp‘𝐺))
249 ffun 6048 . . . . . . . . . . . . . 14 (𝑆:𝐴⟶(SubGrp‘𝐺) → Fun 𝑆)
250248, 249syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → Fun 𝑆)
251 resss 5422 . . . . . . . . . . . . . . 15 (𝐴 ↾ {(1st𝑥)}) ⊆ 𝐴
252233, 251eqsstr3i 3636 . . . . . . . . . . . . . 14 ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ 𝐴
253 fdm 6051 . . . . . . . . . . . . . . 15 (𝑆:𝐴⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐴)
254248, 253syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → dom 𝑆 = 𝐴)
255252, 254syl5sseqr 3654 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ dom 𝑆)
256 funimassov 6811 . . . . . . . . . . . . 13 ((Fun 𝑆 ∧ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ dom 𝑆) → ((𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
257250, 255, 256syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
258247, 257mpbird 247 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
259236, 258syl5ss 3614 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
260259unissd 4462 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
261 df-ov 6653 . . . . . . . . . . . . . 14 ((1st𝑥)𝑆𝑗) = (𝑆‘⟨(1st𝑥), 𝑗⟩)
26241ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → 𝑆:𝐴⟶(SubGrp‘𝐺))
263 elrelimasn 5489 . . . . . . . . . . . . . . . . . 18 (Rel 𝐴 → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴𝑗))
26467, 263syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴𝑗))
265264biimpa 501 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → (1st𝑥)𝐴𝑗)
266 df-br 4654 . . . . . . . . . . . . . . . 16 ((1st𝑥)𝐴𝑗 ↔ ⟨(1st𝑥), 𝑗⟩ ∈ 𝐴)
267265, 266sylib 208 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → ⟨(1st𝑥), 𝑗⟩ ∈ 𝐴)
268262, 267ffvelrnd 6360 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → (𝑆‘⟨(1st𝑥), 𝑗⟩) ∈ (SubGrp‘𝐺))
269261, 268syl5eqel 2705 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → ((1st𝑥)𝑆𝑗) ∈ (SubGrp‘𝐺))
270269, 58fmptd 6385 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)):(𝐴 “ {(1st𝑥)})⟶(SubGrp‘𝐺))
271 frn 6053 . . . . . . . . . . . 12 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)):(𝐴 “ {(1st𝑥)})⟶(SubGrp‘𝐺) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (SubGrp‘𝐺))
272270, 271syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (SubGrp‘𝐺))
273272, 210sstrd 3613 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ 𝒫 (Base‘𝐺))
274 sspwuni 4611 . . . . . . . . . 10 (ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ 𝒫 (Base‘𝐺) ↔ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (Base‘𝐺))
275273, 274sylib 208 . . . . . . . . 9 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (Base‘𝐺))
276168, 3, 260, 275mrcssd 16284 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
2773dprdspan 18426 . . . . . . . . 9 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) = (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
27854, 277syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) = (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
279276, 278sseqtr4d 3642 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
28016, 17fnmpti 6022 . . . . . . . . . . . . 13 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) Fn 𝐼
281 fnressn 6425 . . . . . . . . . . . . 13 (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) Fn 𝐼 ∧ (1st𝑥) ∈ 𝐼) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩})
282280, 45, 281sylancr 695 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩})
283125opeq2d 4409 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩ = ⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩)
284283sneqd 4189 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩} = {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩})
285282, 284eqtrd 2656 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩})
286285oveq2d 6666 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) = (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}))
287 dprdsubg 18423 . . . . . . . . . . . . 13 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺))
28854, 287syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺))
289 dprdsn 18435 . . . . . . . . . . . 12 (((1st𝑥) ∈ 𝐼 ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩} ∧ (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
29045, 288, 289syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺dom DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩} ∧ (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
291290simprd 479 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
292286, 291eqtrd 2656 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
2934adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
29418a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
295 difss 3737 . . . . . . . . . . 11 (𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼
296295a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼)
297 disjdif 4040 . . . . . . . . . . 11 ({(1st𝑥)} ∩ (𝐼 ∖ {(1st𝑥)})) = ∅
298297a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ({(1st𝑥)} ∩ (𝐼 ∖ {(1st𝑥)})) = ∅)
299293, 294, 171, 296, 298, 1dprdcntz2 18437 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
300292, 299eqsstr3d 3640 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
30129adantlr 751 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
30267, 248, 42, 301, 293, 3, 296dprd2dlem1 18440 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐺 DProd (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
303 resmpt 5449 . . . . . . . . . . . 12 ((𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) = (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
304295, 303ax-mp 5 . . . . . . . . . . 11 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) = (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
305304oveq2i 6661 . . . . . . . . . 10 (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐺 DProd (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
306302, 305syl6eqr 2674 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
307306fveq2d 6195 . . . . . . . 8 ((𝜑𝑥𝐴) → ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) = ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
308300, 307sseqtr4d 3642 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
309279, 308sstrd 3613 . . . . . 6 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
310228, 1lsmsubg 18069 . . . . . 6 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺))
311225, 227, 309, 310syl3anc 1326 . . . . 5 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺))
3123mrcsscl 16280 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∧ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
313168, 231, 311, 312syl3anc 1326 . . . 4 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
314 sslin 3839 . . . 4 ((𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))))
315313, 314syl 17 . . 3 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))))
31641ffvelrnda 6359 . . . 4 ((𝜑𝑥𝐴) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
317228lsmlub 18078 . . . . . . . . . 10 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺)) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∧ (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))) ↔ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
318225, 316, 288, 317syl3anc 1326 . . . . . . . . 9 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∧ (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))) ↔ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
319279, 122, 318mpbi2and 956 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
320319, 125sseqtr4d 3642 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
321293, 294, 296dprdres 18427 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) ∧ (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))))
322321simpld 475 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))
3233dprdspan 18426 . . . . . . . . . . 11 (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
324322, 323syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
325 df-ima 5127 . . . . . . . . . . . 12 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})) = ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))
326325unieqi 4445 . . . . . . . . . . 11 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})) = ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))
327326fveq2i 6194 . . . . . . . . . 10 (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))
328324, 327syl6eqr 2674 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
329306, 328eqtrd 2656 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
330 eqimss 3657 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
331329, 330syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
332 ss2in 3840 . . . . . . 7 ((((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))))
333320, 331, 332syl2anc 693 . . . . . 6 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))))
334293, 294, 45, 2, 3dprddisj 18408 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))) = {(0g𝐺)})
335333, 334sseqtrd 3641 . . . . 5 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ {(0g𝐺)})
336228lsmub2 18072 . . . . . . . . 9 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑥) ∈ (SubGrp‘𝐺)) → (𝑆𝑥) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
337225, 316, 336syl2anc 693 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
3382subg0cl 17602 . . . . . . . . 9 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑥))
339316, 338syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝑆𝑥))
340337, 339sseldd 3604 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
3412subg0cl 17602 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
342227, 341syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
343340, 342elind 3798 . . . . . 6 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
344343snssd 4340 . . . . 5 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
345335, 344eqssd 3620 . . . 4 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) = {(0g𝐺)})
346 incom 3805 . . . . 5 ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∩ (𝑆𝑥)) = ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
34770, 102syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
34862fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆𝑥) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩))
349100, 347, 3483eqtr4a 2682 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
350 eqimss2 3658 . . . . . . . . 9 (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥) → (𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)))
351349, 350syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)))
352 eldifsn 4317 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ↔ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥))
35311ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → Rel 𝐴)
354 simprl 794 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 ∈ (𝐴 ↾ {(1st𝑥)}))
355251, 354sseldi 3601 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦𝐴)
356353, 355, 75syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
357356fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩))
358357, 110syl6eqr 2674 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = ((1st𝑦)𝑆(2nd𝑦)))
359356, 354eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}))
360 fvex 6201 . . . . . . . . . . . . . . . . . . . . . 22 (2nd𝑦) ∈ V
361360opelres 5401 . . . . . . . . . . . . . . . . . . . . 21 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}) ↔ (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴 ∧ (1st𝑦) ∈ {(1st𝑥)}))
362361simprbi 480 . . . . . . . . . . . . . . . . . . . 20 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}) → (1st𝑦) ∈ {(1st𝑥)})
363359, 362syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (1st𝑦) ∈ {(1st𝑥)})
364 elsni 4194 . . . . . . . . . . . . . . . . . . 19 ((1st𝑦) ∈ {(1st𝑥)} → (1st𝑦) = (1st𝑥))
365363, 364syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (1st𝑦) = (1st𝑥))
366365oveq1d 6665 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ((1st𝑦)𝑆(2nd𝑦)) = ((1st𝑥)𝑆(2nd𝑦)))
367358, 366eqtrd 2656 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = ((1st𝑥)𝑆(2nd𝑦)))
368354, 233syl6eleq 2711 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 ∈ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})))
369 xp2nd 7199 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
370368, 369syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
371 simprr 796 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦𝑥)
37262adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
373356, 372eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦 = 𝑥 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩))
374 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st𝑦) ∈ V
375374, 360opth 4945 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ ((1st𝑦) = (1st𝑥) ∧ (2nd𝑦) = (2nd𝑥)))
376375baib 944 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑦) = (1st𝑥) → (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ (2nd𝑦) = (2nd𝑥)))
377365, 376syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ (2nd𝑦) = (2nd𝑥)))
378373, 377bitrd 268 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦 = 𝑥 ↔ (2nd𝑦) = (2nd𝑥)))
379378necon3bid 2838 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦𝑥 ↔ (2nd𝑦) ≠ (2nd𝑥)))
380371, 379mpbid 222 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ≠ (2nd𝑥))
381 eldifsn 4317 . . . . . . . . . . . . . . . . . 18 ((2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↔ ((2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}) ∧ (2nd𝑦) ≠ (2nd𝑥)))
382370, 380, 381sylanbrc 698 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))
383 ovex 6678 . . . . . . . . . . . . . . . . 17 ((1st𝑥)𝑆(2nd𝑦)) ∈ V
384 difss 3737 . . . . . . . . . . . . . . . . . . 19 ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ⊆ (𝐴 “ {(1st𝑥)})
385 resmpt 5449 . . . . . . . . . . . . . . . . . . 19 (((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ⊆ (𝐴 “ {(1st𝑥)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = (𝑗 ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
386384, 385ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = (𝑗 ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
387 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑗 = (2nd𝑦) → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆(2nd𝑦)))
388386, 387elrnmpt1s 5373 . . . . . . . . . . . . . . . . 17 (((2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ∧ ((1st𝑥)𝑆(2nd𝑦)) ∈ V) → ((1st𝑥)𝑆(2nd𝑦)) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
389382, 383, 388sylancl 694 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ((1st𝑥)𝑆(2nd𝑦)) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
390367, 389eqeltrd 2701 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
391 df-ima 5127 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))
392390, 391syl6eleqr 2712 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
393392ex 450 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
394352, 393syl5bi 232 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
395394ralrimiv 2965 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
396234, 255syl5ss 3614 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ dom 𝑆)
397 funimass4 6247 . . . . . . . . . . . 12 ((Fun 𝑆 ∧ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ dom 𝑆) → ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ↔ ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
398250, 396, 397syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ↔ ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
399395, 398mpbird 247 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
400399unissd 4462 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
401 imassrn 5477 . . . . . . . . . . 11 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
402401, 273syl5ss 3614 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ 𝒫 (Base‘𝐺))
403 sspwuni 4611 . . . . . . . . . 10 (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ 𝒫 (Base‘𝐺) ↔ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ (Base‘𝐺))
404402, 403sylib 208 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ (Base‘𝐺))
405168, 3, 400, 404mrcssd 16284 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
406 ss2in 3840 . . . . . . . 8 (((𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∧ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))))
407351, 405, 406syl2anc 693 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))))
40859a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)}))
40954, 408, 70, 2, 3dprddisj 18408 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))) = {(0g𝐺)})
410407, 409sseqtrd 3641 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ {(0g𝐺)})
4112subg0cl 17602 . . . . . . . . 9 ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
412225, 411syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
413339, 412elind 3798 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))))
414413snssd 4340 . . . . . 6 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))))
415410, 414eqssd 3620 . . . . 5 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) = {(0g𝐺)})
416346, 415syl5eq 2668 . . . 4 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∩ (𝑆𝑥)) = {(0g𝐺)})
417228, 225, 316, 227, 2, 345, 416lsmdisj2 18095 . . 3 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))) = {(0g𝐺)})
418315, 417sseqtrd 3641 . 2 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ {(0g𝐺)})
4191, 2, 3, 6, 40, 41, 164, 418dmdprdd 18398 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Rel wrel 5119  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748  LSSumclsm 18049   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dprd2db  18442  dprd2d2  18443
  Copyright terms: Public domain W3C validator