MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddisj Structured version   Visualization version   Unicode version

Theorem dprddisj 18408
Description: The function  S is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1  |-  ( ph  ->  G dom DProd  S )
dprdcntz.2  |-  ( ph  ->  dom  S  =  I )
dprdcntz.3  |-  ( ph  ->  X  e.  I )
dprddisj.0  |-  .0.  =  ( 0g `  G )
dprddisj.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
dprddisj  |-  ( ph  ->  ( ( S `  X )  i^i  ( K `  U. ( S
" ( I  \  { X } ) ) ) )  =  {  .0.  } )

Proof of Theorem dprddisj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdcntz.3 . 2  |-  ( ph  ->  X  e.  I )
2 dprdcntz.1 . . . . 5  |-  ( ph  ->  G dom DProd  S )
3 dprdcntz.2 . . . . . . 7  |-  ( ph  ->  dom  S  =  I )
42, 3dprddomcld 18400 . . . . . 6  |-  ( ph  ->  I  e.  _V )
5 eqid 2622 . . . . . . 7  |-  (Cntz `  G )  =  (Cntz `  G )
6 dprddisj.0 . . . . . . 7  |-  .0.  =  ( 0g `  G )
7 dprddisj.k . . . . . . 7  |-  K  =  (mrCls `  (SubGrp `  G
) )
85, 6, 7dmdprd 18397 . . . . . 6  |-  ( ( I  e.  _V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <-> 
( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( (Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } ) ) ) )
94, 3, 8syl2anc 693 . . . . 5  |-  ( ph  ->  ( G dom DProd  S  <->  ( G  e.  Grp  /\  S :
I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
102, 9mpbid 222 . . . 4  |-  ( ph  ->  ( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( (Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } ) ) )
1110simp3d 1075 . . 3  |-  ( ph  ->  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )
12 simpr 477 . . . 4  |-  ( ( A. y  e.  ( I  \  { x } ) ( S `
 x )  C_  ( (Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } )
1312ralimi 2952 . . 3  |-  ( A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( (Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } )  ->  A. x  e.  I  ( ( S `  x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
)
1411, 13syl 17 . 2  |-  ( ph  ->  A. x  e.  I 
( ( S `  x )  i^i  ( K `  U. ( S
" ( I  \  { x } ) ) ) )  =  {  .0.  } )
15 fveq2 6191 . . . . 5  |-  ( x  =  X  ->  ( S `  x )  =  ( S `  X ) )
16 sneq 4187 . . . . . . . . 9  |-  ( x  =  X  ->  { x }  =  { X } )
1716difeq2d 3728 . . . . . . . 8  |-  ( x  =  X  ->  (
I  \  { x } )  =  ( I  \  { X } ) )
1817imaeq2d 5466 . . . . . . 7  |-  ( x  =  X  ->  ( S " ( I  \  { x } ) )  =  ( S
" ( I  \  { X } ) ) )
1918unieqd 4446 . . . . . 6  |-  ( x  =  X  ->  U. ( S " ( I  \  { x } ) )  =  U. ( S " ( I  \  { X } ) ) )
2019fveq2d 6195 . . . . 5  |-  ( x  =  X  ->  ( K `  U. ( S
" ( I  \  { x } ) ) )  =  ( K `  U. ( S " ( I  \  { X } ) ) ) )
2115, 20ineq12d 3815 . . . 4  |-  ( x  =  X  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  ( ( S `  X
)  i^i  ( K `  U. ( S "
( I  \  { X } ) ) ) ) )
2221eqeq1d 2624 . . 3  |-  ( x  =  X  ->  (
( ( S `  x )  i^i  ( K `  U. ( S
" ( I  \  { x } ) ) ) )  =  {  .0.  }  <->  ( ( S `  X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) )  =  {  .0.  }
) )
2322rspcv 3305 . 2  |-  ( X  e.  I  ->  ( A. x  e.  I 
( ( S `  x )  i^i  ( K `  U. ( S
" ( I  \  { x } ) ) ) )  =  {  .0.  }  ->  ( ( S `  X
)  i^i  ( K `  U. ( S "
( I  \  { X } ) ) ) )  =  {  .0.  } ) )
241, 14, 23sylc 65 1  |-  ( ph  ->  ( ( S `  X )  i^i  ( K `  U. ( S
" ( I  \  { X } ) ) ) )  =  {  .0.  } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   U.cuni 4436   class class class wbr 4653   dom cdm 5114   "cima 5117   -->wf 5884   ` cfv 5888   0gc0g 16100  mrClscmrc 16243   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-dprd 18394
This theorem is referenced by:  dprdfeq0  18421  dprdres  18427  dprdss  18428  dprdf1o  18431  dprd2da  18441  dmdprdsplit2lem  18444
  Copyright terms: Public domain W3C validator