Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrunz Structured version   Visualization version   GIF version

Theorem dvrunz 33753
Description: In a division ring the unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvrunz.1 𝐺 = (1st𝑅)
dvrunz.2 𝐻 = (2nd𝑅)
dvrunz.3 𝑋 = ran 𝐺
dvrunz.4 𝑍 = (GId‘𝐺)
dvrunz.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
dvrunz (𝑅 ∈ DivRingOps → 𝑈𝑍)

Proof of Theorem dvrunz
StepHypRef Expression
1 dvrunz.4 . . . 4 𝑍 = (GId‘𝐺)
2 fvex 6201 . . . 4 (GId‘𝐺) ∈ V
31, 2eqeltri 2697 . . 3 𝑍 ∈ V
43zrdivrng 33752 . 2 ¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps
5 dvrunz.1 . . . . . . 7 𝐺 = (1st𝑅)
6 dvrunz.2 . . . . . . 7 𝐻 = (2nd𝑅)
7 dvrunz.3 . . . . . . 7 𝑋 = ran 𝐺
85, 6, 7, 1drngoi 33750 . . . . . 6 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
98simpld 475 . . . . 5 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
10 dvrunz.5 . . . . . 6 𝑈 = (GId‘𝐻)
115, 6, 1, 10, 7rngoueqz 33739 . . . . 5 (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜𝑈 = 𝑍))
129, 11syl 17 . . . 4 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1𝑜𝑈 = 𝑍))
135, 7, 1rngosn6 33725 . . . . . . 7 (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
149, 13syl 17 . . . . . 6 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1𝑜𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
15 eleq1 2689 . . . . . . 7 (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps ↔ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1615biimpd 219 . . . . . 6 (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1714, 16syl6bi 243 . . . . 5 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1𝑜 → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps)))
1817pm2.43a 54 . . . 4 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1𝑜 → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1912, 18sylbird 250 . . 3 (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
2019necon3bd 2808 . 2 (𝑅 ∈ DivRingOps → (¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps → 𝑈𝑍))
214, 20mpi 20 1 (𝑅 ∈ DivRingOps → 𝑈𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  {csn 4177  cop 4183   class class class wbr 4653   × cxp 5112  ran crn 5115  cres 5116  cfv 5888  1st c1st 7166  2nd c2nd 7167  1𝑜c1o 7553  cen 7952  GrpOpcgr 27343  GIdcgi 27344  RingOpscrngo 33693  DivRingOpscdrng 33747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-grpo 27347  df-gid 27348  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694  df-drngo 33748
This theorem is referenced by:  isdrngo2  33757  divrngpr  33852  isfldidl  33867
  Copyright terms: Public domain W3C validator