| Step | Hyp | Ref
| Expression |
| 1 | | ffvelrn 6357 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
| 2 | | eldifsni 4320 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘𝑥) ≠ ∅) |
| 3 | | n0 3931 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 4 | 2, 3 | sylib 208 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 5 | 1, 4 | syl 17 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 6 | 5 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 7 | | rabid2 3118 |
. . . . . . 7
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ (𝐹‘𝑥)) |
| 8 | 6, 7 | sylibr 224 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → 𝐴 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)}) |
| 9 | | axdc2lem.2 |
. . . . . . . 8
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 10 | 9 | dmeqi 5325 |
. . . . . . 7
⊢ dom 𝑅 = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 11 | | 19.42v 1918 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))) |
| 12 | 11 | abbii 2739 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))} |
| 13 | | dmopab 5335 |
. . . . . . . 8
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 14 | | df-rab 2921 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹‘𝑥))} |
| 15 | 12, 13, 14 | 3eqtr4i 2654 |
. . . . . . 7
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} |
| 16 | 10, 15 | eqtri 2644 |
. . . . . 6
⊢ dom 𝑅 = {𝑥 ∈ 𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹‘𝑥)} |
| 17 | 8, 16 | syl6reqr 2675 |
. . . . 5
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → dom 𝑅 = 𝐴) |
| 18 | 17 | neeq1d 2853 |
. . . 4
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (dom 𝑅 ≠ ∅ ↔ 𝐴 ≠ ∅)) |
| 19 | 18 | biimparc 504 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → dom 𝑅 ≠ ∅) |
| 20 | | eldifi 3732 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘𝑥) ∈ 𝒫 𝐴) |
| 21 | | elelpwi 4171 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝒫 𝐴) → 𝑦 ∈ 𝐴) |
| 22 | 21 | expcom 451 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ 𝒫 𝐴 → (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ 𝐴)) |
| 23 | 1, 20, 22 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ 𝐴)) |
| 24 | 23 | expimpd 629 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 25 | 24 | exlimdv 1861 |
. . . . . . 7
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 26 | 25 | alrimiv 1855 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑦(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 27 | 9 | rneqi 5352 |
. . . . . . . . 9
⊢ ran 𝑅 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 28 | | rnopab 5370 |
. . . . . . . . 9
⊢ ran
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 29 | 27, 28 | eqtri 2644 |
. . . . . . . 8
⊢ ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
| 30 | 29 | sseq1i 3629 |
. . . . . . 7
⊢ (ran
𝑅 ⊆ 𝐴 ↔ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ⊆ 𝐴) |
| 31 | | abss 3671 |
. . . . . . 7
⊢ ({𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ⊆ 𝐴 ↔ ∀𝑦(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 32 | 30, 31 | bitri 264 |
. . . . . 6
⊢ (ran
𝑅 ⊆ 𝐴 ↔ ∀𝑦(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → 𝑦 ∈ 𝐴)) |
| 33 | 26, 32 | sylibr 224 |
. . . . 5
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝑅 ⊆ 𝐴) |
| 34 | 33, 17 | sseqtr4d 3642 |
. . . 4
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝑅 ⊆ dom 𝑅) |
| 35 | 34 | adantl 482 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝑅 ⊆ dom 𝑅) |
| 36 | | fvrn0 6216 |
. . . . . . . . . 10
⊢ (𝐹‘𝑥) ∈ (ran 𝐹 ∪ {∅}) |
| 37 | | elssuni 4467 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (ran 𝐹 ∪ {∅}) → (𝐹‘𝑥) ⊆ ∪ (ran
𝐹 ∪
{∅})) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐹‘𝑥) ⊆ ∪ (ran
𝐹 ∪
{∅}) |
| 39 | 38 | sseli 3599 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐹‘𝑥) → 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅})) |
| 40 | 39 | anim2i 593 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))) |
| 41 | 40 | ssopab2i 5003 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))} |
| 42 | | df-xp 5120 |
. . . . . 6
⊢ (𝐴 × ∪ (ran 𝐹 ∪ {∅})) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ (ran
𝐹 ∪
{∅}))} |
| 43 | 41, 9, 42 | 3sstr4i 3644 |
. . . . 5
⊢ 𝑅 ⊆ (𝐴 × ∪ (ran
𝐹 ∪
{∅})) |
| 44 | | axdc2lem.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
| 45 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ran 𝐹 ⊆ (𝒫 𝐴 ∖
{∅})) |
| 46 | 45 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝐹 ⊆ (𝒫 𝐴 ∖
{∅})) |
| 47 | 44 | pwex 4848 |
. . . . . . . . . . 11
⊢ 𝒫
𝐴 ∈ V |
| 48 | | difexg 4808 |
. . . . . . . . . . 11
⊢
(𝒫 𝐴 ∈
V → (𝒫 𝐴
∖ {∅}) ∈ V) |
| 49 | 47, 48 | ax-mp 5 |
. . . . . . . . . 10
⊢
(𝒫 𝐴 ∖
{∅}) ∈ V |
| 50 | 49 | ssex 4802 |
. . . . . . . . 9
⊢ (ran
𝐹 ⊆ (𝒫 𝐴 ∖ {∅}) → ran
𝐹 ∈
V) |
| 51 | 46, 50 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ran 𝐹 ∈ V) |
| 52 | | p0ex 4853 |
. . . . . . . 8
⊢ {∅}
∈ V |
| 53 | | unexg 6959 |
. . . . . . . 8
⊢ ((ran
𝐹 ∈ V ∧ {∅}
∈ V) → (ran 𝐹
∪ {∅}) ∈ V) |
| 54 | 51, 52, 53 | sylancl 694 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (ran 𝐹 ∪ {∅}) ∈
V) |
| 55 | | uniexg 6955 |
. . . . . . 7
⊢ ((ran
𝐹 ∪ {∅}) ∈ V
→ ∪ (ran 𝐹 ∪ {∅}) ∈ V) |
| 56 | 54, 55 | syl 17 |
. . . . . 6
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∪ (ran 𝐹 ∪ {∅}) ∈ V) |
| 57 | | xpexg 6960 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ ∪ (ran 𝐹 ∪ {∅}) ∈ V) → (𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈
V) |
| 58 | 44, 56, 57 | sylancr 695 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → (𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈
V) |
| 59 | | ssexg 4804 |
. . . . 5
⊢ ((𝑅 ⊆ (𝐴 × ∪ (ran
𝐹 ∪ {∅})) ∧
(𝐴 × ∪ (ran 𝐹 ∪ {∅})) ∈ V) → 𝑅 ∈ V) |
| 60 | 43, 58, 59 | sylancr 695 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝑅 ∈ V) |
| 61 | | n0 3931 |
. . . . . . . . 9
⊢ (dom
𝑟 ≠ ∅ ↔
∃𝑥 𝑥 ∈ dom 𝑟) |
| 62 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 63 | 62 | eldm 5321 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝑟 ↔ ∃𝑦 𝑥𝑟𝑦) |
| 64 | 63 | exbii 1774 |
. . . . . . . . 9
⊢
(∃𝑥 𝑥 ∈ dom 𝑟 ↔ ∃𝑥∃𝑦 𝑥𝑟𝑦) |
| 65 | 61, 64 | bitr2i 265 |
. . . . . . . 8
⊢
(∃𝑥∃𝑦 𝑥𝑟𝑦 ↔ dom 𝑟 ≠ ∅) |
| 66 | | dmeq 5324 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) |
| 67 | 66 | neeq1d 2853 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (dom 𝑟 ≠ ∅ ↔ dom 𝑅 ≠ ∅)) |
| 68 | 65, 67 | syl5bb 272 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∃𝑥∃𝑦 𝑥𝑟𝑦 ↔ dom 𝑅 ≠ ∅)) |
| 69 | | rneq 5351 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) |
| 70 | 69, 66 | sseq12d 3634 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (ran 𝑟 ⊆ dom 𝑟 ↔ ran 𝑅 ⊆ dom 𝑅)) |
| 71 | 68, 70 | anbi12d 747 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) ↔ (dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅))) |
| 72 | | breq 4655 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 73 | 72 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 74 | 73 | exbidv 1850 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘) ↔ ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 75 | 71, 74 | imbi12d 334 |
. . . . 5
⊢ (𝑟 = 𝑅 → (((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘)) ↔ ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)))) |
| 76 | | ax-dc 9268 |
. . . . 5
⊢
((∃𝑥∃𝑦 𝑥𝑟𝑦 ∧ ran 𝑟 ⊆ dom 𝑟) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑟(ℎ‘suc 𝑘)) |
| 77 | 75, 76 | vtoclg 3266 |
. . . 4
⊢ (𝑅 ∈ V → ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 78 | 60, 77 | syl 17 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ((dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 79 | 19, 35, 78 | mp2and 715 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) |
| 80 | | simpr 477 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) |
| 81 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (ℎ‘𝑘) = (ℎ‘𝑥)) |
| 82 | | suceq 5790 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → suc 𝑘 = suc 𝑥) |
| 83 | 82 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (ℎ‘suc 𝑘) = (ℎ‘suc 𝑥)) |
| 84 | 81, 83 | breq12d 4666 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → ((ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ↔ (ℎ‘𝑥)𝑅(ℎ‘suc 𝑥))) |
| 85 | 84 | rspccv 3306 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝑥 ∈ ω → (ℎ‘𝑥)𝑅(ℎ‘suc 𝑥))) |
| 86 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢ (ℎ‘𝑥) ∈ V |
| 87 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢ (ℎ‘suc 𝑥) ∈ V |
| 88 | 86, 87 | breldm 5329 |
. . . . . . . . . . . . 13
⊢ ((ℎ‘𝑥)𝑅(ℎ‘suc 𝑥) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 89 | 85, 88 | syl6 35 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝑥 ∈ ω → (ℎ‘𝑥) ∈ dom 𝑅)) |
| 90 | 89 | imp 445 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 91 | 90 | adantll 750 |
. . . . . . . . . 10
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ dom 𝑅) |
| 92 | | eleq2 2690 |
. . . . . . . . . . 11
⊢ (dom
𝑅 = 𝐴 → ((ℎ‘𝑥) ∈ dom 𝑅 ↔ (ℎ‘𝑥) ∈ 𝐴)) |
| 93 | 92 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → ((ℎ‘𝑥) ∈ dom 𝑅 ↔ (ℎ‘𝑥) ∈ 𝐴)) |
| 94 | 91, 93 | mpbid 222 |
. . . . . . . . 9
⊢ (((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) ∧ 𝑥 ∈ ω) → (ℎ‘𝑥) ∈ 𝐴) |
| 95 | | axdc2lem.3 |
. . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
| 96 | 94, 95 | fmptd 6385 |
. . . . . . . 8
⊢ ((dom
𝑅 = 𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘)) → 𝐺:ω⟶𝐴) |
| 97 | 96 | ex 450 |
. . . . . . 7
⊢ (dom
𝑅 = 𝐴 → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → 𝐺:ω⟶𝐴)) |
| 98 | 17, 97 | syl 17 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → 𝐺:ω⟶𝐴)) |
| 99 | 98 | impcom 446 |
. . . . 5
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → 𝐺:ω⟶𝐴) |
| 100 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (ℎ‘𝑥) = (ℎ‘𝑘)) |
| 101 | | fvex 6201 |
. . . . . . . . . 10
⊢ (ℎ‘𝑘) ∈ V |
| 102 | 100, 95, 101 | fvmpt 6282 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → (𝐺‘𝑘) = (ℎ‘𝑘)) |
| 103 | | peano2 7086 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
| 104 | | fvex 6201 |
. . . . . . . . . 10
⊢ (ℎ‘suc 𝑘) ∈ V |
| 105 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑘 → (ℎ‘𝑥) = (ℎ‘suc 𝑘)) |
| 106 | 105, 95 | fvmptg 6280 |
. . . . . . . . . 10
⊢ ((suc
𝑘 ∈ ω ∧
(ℎ‘suc 𝑘) ∈ V) → (𝐺‘suc 𝑘) = (ℎ‘suc 𝑘)) |
| 107 | 103, 104,
106 | sylancl 694 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → (𝐺‘suc 𝑘) = (ℎ‘suc 𝑘)) |
| 108 | 102, 107 | breq12d 4666 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) ↔ (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘))) |
| 109 | | fvex 6201 |
. . . . . . . . . 10
⊢ (𝐺‘𝑘) ∈ V |
| 110 | | fvex 6201 |
. . . . . . . . . 10
⊢ (𝐺‘suc 𝑘) ∈ V |
| 111 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑘) → (𝑥 ∈ 𝐴 ↔ (𝐺‘𝑘) ∈ 𝐴)) |
| 112 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐺‘𝑘) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑘))) |
| 113 | 112 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑘) → (𝑦 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘(𝐺‘𝑘)))) |
| 114 | 111, 113 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐺‘𝑘) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘(𝐺‘𝑘))))) |
| 115 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘suc 𝑘) → (𝑦 ∈ (𝐹‘(𝐺‘𝑘)) ↔ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 116 | 115 | anbi2d 740 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘suc 𝑘) → (((𝐺‘𝑘) ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘(𝐺‘𝑘))) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))))) |
| 117 | 109, 110,
114, 116, 9 | brab 4998 |
. . . . . . . . 9
⊢ ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) ↔ ((𝐺‘𝑘) ∈ 𝐴 ∧ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 118 | 117 | simprbi 480 |
. . . . . . . 8
⊢ ((𝐺‘𝑘)𝑅(𝐺‘suc 𝑘) → (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 119 | 108, 118 | syl6bir 244 |
. . . . . . 7
⊢ (𝑘 ∈ ω → ((ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 120 | 119 | ralimia 2950 |
. . . . . 6
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 121 | 120 | adantr 481 |
. . . . 5
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) |
| 122 | | fvrn0 6216 |
. . . . . . . . . 10
⊢ (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) |
| 123 | 122 | rgenw 2924 |
. . . . . . . . 9
⊢
∀𝑥 ∈
ω (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) |
| 124 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)) = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
| 125 | 124 | fmpt 6381 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ω (ℎ‘𝑥) ∈ (ran ℎ ∪ {∅}) ↔ (𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅})) |
| 126 | 123, 125 | mpbi 220 |
. . . . . . . 8
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅}) |
| 127 | | dcomex 9269 |
. . . . . . . 8
⊢ ω
∈ V |
| 128 | | vex 3203 |
. . . . . . . . . 10
⊢ ℎ ∈ V |
| 129 | 128 | rnex 7100 |
. . . . . . . . 9
⊢ ran ℎ ∈ V |
| 130 | 129, 52 | unex 6956 |
. . . . . . . 8
⊢ (ran
ℎ ∪ {∅}) ∈
V |
| 131 | | fex2 7121 |
. . . . . . . 8
⊢ (((𝑥 ∈ ω ↦ (ℎ‘𝑥)):ω⟶(ran ℎ ∪ {∅}) ∧ ω ∈ V ∧
(ran ℎ ∪ {∅})
∈ V) → (𝑥 ∈
ω ↦ (ℎ‘𝑥)) ∈ V) |
| 132 | 126, 127,
130, 131 | mp3an 1424 |
. . . . . . 7
⊢ (𝑥 ∈ ω ↦ (ℎ‘𝑥)) ∈ V |
| 133 | 95, 132 | eqeltri 2697 |
. . . . . 6
⊢ 𝐺 ∈ V |
| 134 | | feq1 6026 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔:ω⟶𝐴 ↔ 𝐺:ω⟶𝐴)) |
| 135 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔‘suc 𝑘) = (𝐺‘suc 𝑘)) |
| 136 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑔‘𝑘) = (𝐺‘𝑘)) |
| 137 | 136 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝐹‘(𝑔‘𝑘)) = (𝐹‘(𝐺‘𝑘))) |
| 138 | 135, 137 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)) ↔ (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 139 | 138 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)) ↔ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘)))) |
| 140 | 134, 139 | anbi12d 747 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))) ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))))) |
| 141 | 133, 140 | spcev 3300 |
. . . . 5
⊢ ((𝐺:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝐺‘suc 𝑘) ∈ (𝐹‘(𝐺‘𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
| 142 | 99, 121, 141 | syl2anc 693 |
. . . 4
⊢
((∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
| 143 | 142 | ex 450 |
. . 3
⊢
(∀𝑘 ∈
ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))))) |
| 144 | 143 | exlimiv 1858 |
. 2
⊢
(∃ℎ∀𝑘 ∈ ω (ℎ‘𝑘)𝑅(ℎ‘suc 𝑘) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘))))) |
| 145 | 79, 80, 144 | sylc 65 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |