Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincscm Structured version   Visualization version   GIF version

Theorem lincscm 42219
Description: A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincscm.s = ( ·𝑠𝑀)
lincscm.t · = (.r‘(Scalar‘𝑀))
lincscm.x 𝑋 = (𝐴( linC ‘𝑀)𝑉)
lincscm.r 𝑅 = (Base‘(Scalar‘𝑀))
lincscm.f 𝐹 = (𝑥𝑉 ↦ (𝑆 · (𝐴𝑥)))
Assertion
Ref Expression
lincscm (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝐹( linC ‘𝑀)𝑉))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑅   𝑥,𝑆   𝑥,𝑉   𝑥, ·
Allowed substitution hints:   (𝑥)   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem lincscm
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2622 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
3 lincscm.r . . 3 𝑅 = (Base‘(Scalar‘𝑀))
4 eqid 2622 . . 3 (0g𝑀) = (0g𝑀)
5 eqid 2622 . . 3 (+g𝑀) = (+g𝑀)
6 lincscm.s . . 3 = ( ·𝑠𝑀)
7 simp1l 1085 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑀 ∈ LMod)
8 simpr 477 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
983ad2ant1 1082 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
10 simpr 477 . . . 4 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) → 𝑆𝑅)
11103ad2ant2 1083 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑆𝑅)
127adantr 481 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
13 elmapi 7879 . . . . . . . 8 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴:𝑉𝑅)
14 ffvelrn 6357 . . . . . . . . 9 ((𝐴:𝑉𝑅𝑣𝑉) → (𝐴𝑣) ∈ 𝑅)
1514ex 450 . . . . . . . 8 (𝐴:𝑉𝑅 → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1613, 15syl 17 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1716adantr 481 . . . . . 6 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
18173ad2ant2 1083 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 → (𝐴𝑣) ∈ 𝑅))
1918imp 445 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝐴𝑣) ∈ 𝑅)
20 elelpwi 4171 . . . . . . . 8 ((𝑣𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑣 ∈ (Base‘𝑀))
2120expcom 451 . . . . . . 7 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
2221adantl 482 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
23223ad2ant1 1082 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
2423imp 445 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑣 ∈ (Base‘𝑀))
25 eqid 2622 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
261, 2, 25, 3lmodvscl 18880 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴𝑣) ∈ 𝑅𝑣 ∈ (Base‘𝑀)) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ (Base‘𝑀))
2712, 19, 24, 26syl3anc 1326 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ (Base‘𝑀))
282, 3scmfsupp 42159 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
29283adant2r 1321 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
301, 2, 3, 4, 5, 6, 7, 9, 11, 27, 29gsumvsmul 18927 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))) = (𝑆 (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
312lmodring 18871 . . . . . . . . . 10 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
3231adantr 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Ring)
33323ad2ant1 1082 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (Scalar‘𝑀) ∈ Ring)
3433adantr 481 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (Scalar‘𝑀) ∈ Ring)
353eleq2i 2693 . . . . . . . . . . 11 (𝑆𝑅𝑆 ∈ (Base‘(Scalar‘𝑀)))
3635biimpi 206 . . . . . . . . . 10 (𝑆𝑅𝑆 ∈ (Base‘(Scalar‘𝑀)))
3736adantl 482 . . . . . . . . 9 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
38373ad2ant2 1083 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
3938adantr 481 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → 𝑆 ∈ (Base‘(Scalar‘𝑀)))
40 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
4140, 3syl6eleq 2711 . . . . . . . . . . . 12 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀)))
4241ex 450 . . . . . . . . . . 11 (𝐴:𝑉𝑅 → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4313, 42syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4443adantr 481 . . . . . . . . 9 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
45443ad2ant2 1083 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑥𝑉 → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))))
4645imp 445 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀)))
47 eqid 2622 . . . . . . . 8 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
48 lincscm.t . . . . . . . 8 · = (.r‘(Scalar‘𝑀))
4947, 48ringcl 18561 . . . . . . 7 (((Scalar‘𝑀) ∈ Ring ∧ 𝑆 ∈ (Base‘(Scalar‘𝑀)) ∧ (𝐴𝑥) ∈ (Base‘(Scalar‘𝑀))) → (𝑆 · (𝐴𝑥)) ∈ (Base‘(Scalar‘𝑀)))
5034, 39, 46, 49syl3anc 1326 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑥𝑉) → (𝑆 · (𝐴𝑥)) ∈ (Base‘(Scalar‘𝑀)))
51 lincscm.f . . . . . 6 𝐹 = (𝑥𝑉 ↦ (𝑆 · (𝐴𝑥)))
5250, 51fmptd 6385 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
53 fvex 6201 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
54 elmapg 7870 . . . . . 6 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
5553, 9, 54sylancr 695 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
5652, 55mpbird 247 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
57 lincval 42198 . . . 4 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
587, 56, 9, 57syl3anc 1326 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
59 simpr 477 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑣𝑉)
60 ovex 6678 . . . . . . . 8 (𝑆 · (𝐴𝑣)) ∈ V
61 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐴𝑥) = (𝐴𝑣))
6261oveq2d 6666 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑆 · (𝐴𝑥)) = (𝑆 · (𝐴𝑣)))
6362, 51fvmptg 6280 . . . . . . . 8 ((𝑣𝑉 ∧ (𝑆 · (𝐴𝑣)) ∈ V) → (𝐹𝑣) = (𝑆 · (𝐴𝑣)))
6459, 60, 63sylancl 694 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝐹𝑣) = (𝑆 · (𝐴𝑣)))
6564oveq1d 6665 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣))
6611adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → 𝑆𝑅)
671, 2, 25, 3, 48lmodvsass 18888 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆𝑅 ∧ (𝐴𝑣) ∈ 𝑅𝑣 ∈ (Base‘𝑀))) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)))
6812, 66, 19, 24, 67syl13anc 1328 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)))
696eqcomi 2631 . . . . . . . . 9 ( ·𝑠𝑀) =
7069a1i 11 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ( ·𝑠𝑀) = )
7170oveqd 6667 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → (𝑆( ·𝑠𝑀)((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7268, 71eqtrd 2656 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝑆 · (𝐴𝑣))( ·𝑠𝑀)𝑣) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7365, 72eqtrd 2656 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
7473mpteq2dva 4744 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
7574oveq2d 6666 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
7658, 75eqtrd 2656 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ (𝑆 ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
77 lincscm.x . . . . 5 𝑋 = (𝐴( linC ‘𝑀)𝑉)
7877a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑋 = (𝐴( linC ‘𝑀)𝑉))
793oveq1i 6660 . . . . . . . . 9 (𝑅𝑚 𝑉) = ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)
8079eleq2i 2693 . . . . . . . 8 (𝐴 ∈ (𝑅𝑚 𝑉) ↔ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
8180biimpi 206 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
8281adantr 481 . . . . . 6 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
83823ad2ant2 1083 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
84 lincval 42198 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
857, 83, 9, 84syl3anc 1326 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
8678, 85eqtrd 2656 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))))
8786oveq2d 6666 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝑆 (𝑀 Σg (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))))
8830, 76, 873eqtr4rd 2667 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝑆𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 𝑋) = (𝐹( linC ‘𝑀)𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857   finSupp cfsupp 8275  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101  Ringcrg 18547  LModclmod 18863   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-linc 42195
This theorem is referenced by:  lincscmcl  42221
  Copyright terms: Public domain W3C validator