Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoss Structured version   Visualization version   GIF version

Theorem lcoss 42225
Description: A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉))

Proof of Theorem lcoss
Dummy variables 𝑥 𝑓 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elelpwi 4171 . . . . . . 7 ((𝑣𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑣 ∈ (Base‘𝑀))
21expcom 451 . . . . . 6 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
32adantl 482 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (Base‘𝑀)))
43imp 445 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 ∈ (Base‘𝑀))
5 eqid 2622 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2622 . . . . . . 7 (Scalar‘𝑀) = (Scalar‘𝑀)
7 eqid 2622 . . . . . . 7 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
8 eqid 2622 . . . . . . 7 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
9 equequ1 1952 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = 𝑣𝑦 = 𝑣))
109ifbid 4108 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = if(𝑦 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
1110cbvmptv 4750 . . . . . . 7 (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑦𝑉 ↦ if(𝑦 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
125, 6, 7, 8, 11mptcfsupp 42161 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
13123expa 1265 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
14 eqid 2622 . . . . . . . 8 (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
155, 6, 7, 8, 14linc1 42214 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉) = 𝑣)
16153expa 1265 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉) = 𝑣)
1716eqcomd 2628 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))
18 eqid 2622 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
196, 18, 8lmod1cl 18890 . . . . . . . . . 10 (𝑀 ∈ LMod → (1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
206, 18, 7lmod0cl 18889 . . . . . . . . . 10 (𝑀 ∈ LMod → (0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
2119, 20ifcld 4131 . . . . . . . . 9 (𝑀 ∈ LMod → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
2221ad3antrrr 766 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
2322, 14fmptd 6385 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀)))
24 fvex 6201 . . . . . . . 8 (Base‘(Scalar‘𝑀)) ∈ V
25 simplr 792 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
26 elmapg 7870 . . . . . . . 8 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀))))
2724, 25, 26sylancr 695 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑉⟶(Base‘(Scalar‘𝑀))))
2823, 27mpbird 247 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
29 breq1 4656 . . . . . . . 8 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀))))
30 oveq1 6657 . . . . . . . . 9 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑉) = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))
3130eqeq2d 2632 . . . . . . . 8 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑣 = (𝑓( linC ‘𝑀)𝑉) ↔ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉)))
3229, 31anbi12d 747 . . . . . . 7 (𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)) ↔ ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))))
3332adantl 482 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) ∧ 𝑓 = (𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)) ↔ ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉))))
3428, 33rspcedv 3313 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = ((𝑥𝑉 ↦ if(𝑥 = 𝑣, (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑉)) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉))))
3513, 17, 34mp2and 715 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))
365, 6, 18lcoval 42201 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))))
3736adantr 481 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑓( linC ‘𝑀)𝑉)))))
384, 35, 37mpbir2and 957 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝑣𝑉) → 𝑣 ∈ (𝑀 LinCo 𝑉))
3938ex 450 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉𝑣 ∈ (𝑀 LinCo 𝑉)))
4039ssrdv 3609 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  wss 3574  ifcif 4086  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857   finSupp cfsupp 8275  Basecbs 15857  Scalarcsca 15944  0gc0g 16100  1rcur 18501  LModclmod 18863   linC clinc 42193   LinCo clinco 42194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-linc 42195  df-lco 42196
This theorem is referenced by:  lspsslco  42226
  Copyright terms: Public domain W3C validator