Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmsuppss Structured version   Visualization version   GIF version

Theorem scmsuppss 42153
Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.)
Hypotheses
Ref Expression
scmsuppss.s 𝑆 = (Scalar‘𝑀)
scmsuppss.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
scmsuppss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmsuppss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapi 7879 . . . . 5 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴:𝑉𝑅)
2 fdm 6051 . . . . . 6 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
3 eqidd 2623 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
4 fveq2 6191 . . . . . . . . . . . . . 14 (𝑣 = 𝑥 → (𝐴𝑣) = (𝐴𝑥))
5 id 22 . . . . . . . . . . . . . 14 (𝑣 = 𝑥𝑣 = 𝑥)
64, 5oveq12d 6668 . . . . . . . . . . . . 13 (𝑣 = 𝑥 → ((𝐴𝑣)( ·𝑠𝑀)𝑣) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
76adantl 482 . . . . . . . . . . . 12 (((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) ∧ 𝑣 = 𝑥) → ((𝐴𝑣)( ·𝑠𝑀)𝑣) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
8 simpr 477 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑥𝑉)
9 ovex 6678 . . . . . . . . . . . . 13 ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ V
109a1i 11 . . . . . . . . . . . 12 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ V)
113, 7, 8, 10fvmptd 6288 . . . . . . . . . . 11 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) = ((𝐴𝑥)( ·𝑠𝑀)𝑥))
1211neeq1d 2853 . . . . . . . . . 10 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀) ↔ ((𝐴𝑥)( ·𝑠𝑀)𝑥) ≠ (0g𝑀)))
13 oveq1 6657 . . . . . . . . . . . . 13 ((𝐴𝑥) = (0g𝑆) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = ((0g𝑆)( ·𝑠𝑀)𝑥))
14 simplrr 801 . . . . . . . . . . . . . 14 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
15 elelpwi 4171 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑀))
1615expcom 451 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1716adantr 481 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1817adantl 482 . . . . . . . . . . . . . . 15 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
1918imp 445 . . . . . . . . . . . . . 14 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
20 eqid 2622 . . . . . . . . . . . . . . 15 (Base‘𝑀) = (Base‘𝑀)
21 scmsuppss.s . . . . . . . . . . . . . . 15 𝑆 = (Scalar‘𝑀)
22 eqid 2622 . . . . . . . . . . . . . . 15 ( ·𝑠𝑀) = ( ·𝑠𝑀)
23 eqid 2622 . . . . . . . . . . . . . . 15 (0g𝑆) = (0g𝑆)
24 eqid 2622 . . . . . . . . . . . . . . 15 (0g𝑀) = (0g𝑀)
2520, 21, 22, 23, 24lmod0vs 18896 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑀)) → ((0g𝑆)( ·𝑠𝑀)𝑥) = (0g𝑀))
2614, 19, 25syl2anc 693 . . . . . . . . . . . . 13 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((0g𝑆)( ·𝑠𝑀)𝑥) = (0g𝑀))
2713, 26sylan9eqr 2678 . . . . . . . . . . . 12 (((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) ∧ (𝐴𝑥) = (0g𝑆)) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = (0g𝑀))
2827ex 450 . . . . . . . . . . 11 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → ((𝐴𝑥) = (0g𝑆) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) = (0g𝑀)))
2928necon3d 2815 . . . . . . . . . 10 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝐴𝑥)( ·𝑠𝑀)𝑥) ≠ (0g𝑀) → (𝐴𝑥) ≠ (0g𝑆)))
3012, 29sylbid 230 . . . . . . . . 9 ((((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) ∧ 𝑥𝑉) → (((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀) → (𝐴𝑥) ≠ (0g𝑆)))
3130ss2rabdv 3683 . . . . . . . 8 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)})
32 ovex 6678 . . . . . . . . . . . . 13 ((𝐴𝑣)( ·𝑠𝑀)𝑣) ∈ V
33 eqid 2622 . . . . . . . . . . . . 13 (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))
3432, 33dmmpti 6023 . . . . . . . . . . . 12 dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = 𝑉
35 rabeq 3192 . . . . . . . . . . . 12 (dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) = 𝑉 → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
3634, 35mp1i 13 . . . . . . . . . . 11 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} = {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
37 rabeq 3192 . . . . . . . . . . 11 (dom 𝐴 = 𝑉 → {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} = {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)})
3836, 37sseq12d 3634 . . . . . . . . . 10 (dom 𝐴 = 𝑉 → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
3938adantr 481 . . . . . . . . 9 ((dom 𝐴 = 𝑉𝐴:𝑉𝑅) → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
4039adantr 481 . . . . . . . 8 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → ({𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)} ↔ {𝑥𝑉 ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥𝑉 ∣ (𝐴𝑥) ≠ (0g𝑆)}))
4131, 40mpbird 247 . . . . . . 7 (((dom 𝐴 = 𝑉𝐴:𝑉𝑅) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
4241exp43 640 . . . . . 6 (dom 𝐴 = 𝑉 → (𝐴:𝑉𝑅 → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)}))))
432, 42mpcom 38 . . . . 5 (𝐴:𝑉𝑅 → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
441, 43syl 17 . . . 4 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑀 ∈ LMod → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
4544com13 88 . . 3 (𝑀 ∈ LMod → (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝐴 ∈ (𝑅𝑚 𝑉) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})))
46453imp 1256 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)} ⊆ {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
47 funmpt 5926 . . . 4 Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))
4847a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
49 mptexg 6484 . . . 4 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
50493ad2ant2 1083 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
51 fvexd 6203 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (0g𝑀) ∈ V)
52 suppval1 7301 . . 3 ((Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∧ (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V ∧ (0g𝑀) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) = {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
5348, 50, 51, 52syl3anc 1326 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) = {𝑥 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))‘𝑥) ≠ (0g𝑀)})
54 elmapfun 7881 . . . 4 (𝐴 ∈ (𝑅𝑚 𝑉) → Fun 𝐴)
55543ad2ant3 1084 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → Fun 𝐴)
56 simp3 1063 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → 𝐴 ∈ (𝑅𝑚 𝑉))
57 fvexd 6203 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (0g𝑆) ∈ V)
58 suppval1 7301 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅𝑚 𝑉) ∧ (0g𝑆) ∈ V) → (𝐴 supp (0g𝑆)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
5955, 56, 57, 58syl3anc 1326 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (𝐴 supp (0g𝑆)) = {𝑥 ∈ dom 𝐴 ∣ (𝐴𝑥) ≠ (0g𝑆)})
6046, 53, 593sstr4d 3648 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158  cmpt 4729  dom cdm 5114  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650   supp csupp 7295  𝑚 cmap 7857  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ring 18549  df-lmod 18865
This theorem is referenced by:  scmsuppfi  42158
  Copyright terms: Public domain W3C validator