MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxlb Structured version   Visualization version   GIF version

Theorem ixxlb 12197
Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxub.2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
ixxub.3 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
ixxub.4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
ixxub.5 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
Assertion
Ref Expression
ixxlb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑤)   𝑆(𝑤)   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxlb
StepHypRef Expression
1 ixx.1 . . . . . . . . 9 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elixx1 12184 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
323adant3 1081 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
43biimpa 501 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
54simp1d 1073 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
65ex 450 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ ℝ*))
76ssrdv 3609 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ⊆ ℝ*)
8 infxrcl 12163 . . 3 ((𝐴𝑂𝐵) ⊆ ℝ* → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
97, 8syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
10 simp1 1061 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ∈ ℝ*)
11 simprr 796 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))
127ad2antrr 762 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝐴𝑂𝐵) ⊆ ℝ*)
13 qre 11793 . . . . . . . . . . 11 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ)
1413rexrd 10089 . . . . . . . . . 10 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ*)
1514ad2antlr 763 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 ∈ ℝ*)
16 simprl 794 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴 < 𝑤)
1710ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴 ∈ ℝ*)
18 ixxub.4 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
1917, 15, 18syl2anc 693 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝐴 < 𝑤𝐴𝑅𝑤))
2016, 19mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴𝑅𝑤)
219ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
22 simpll2 1101 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐵 ∈ ℝ*)
23 simp3 1063 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ≠ ∅)
24 n0 3931 . . . . . . . . . . . . . 14 ((𝐴𝑂𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
2523, 24sylib 208 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
269adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
27 simpl2 1065 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
28 infxrlb 12164 . . . . . . . . . . . . . . 15 (((𝐴𝑂𝐵) ⊆ ℝ*𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
297, 28sylan 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
304simp3d 1075 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
31 ixxub.3 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
325, 27, 31syl2anc 693 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤𝑆𝐵𝑤𝐵))
3330, 32mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝐵)
3426, 5, 27, 29, 33xrletrd 11993 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3525, 34exlimddv 1863 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3635ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3715, 21, 22, 11, 36xrltletrd 11992 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 < 𝐵)
38 ixxub.2 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
3915, 22, 38syl2anc 693 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝑤 < 𝐵𝑤𝑆𝐵))
4037, 39mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤𝑆𝐵)
413ad2antrr 762 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
4215, 20, 40, 41mpbir3and 1245 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 ∈ (𝐴𝑂𝐵))
4312, 42, 28syl2anc 693 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
4421, 15xrlenltd 10104 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤 ↔ ¬ 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
4543, 44mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → ¬ 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))
4611, 45pm2.65da 600 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) → ¬ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
4746nrexdv 3001 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
48 qbtwnxr 12031 . . . . . 6 ((𝐴 ∈ ℝ* ∧ inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*𝐴 < inf((𝐴𝑂𝐵), ℝ*, < )) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
49483expia 1267 . . . . 5 ((𝐴 ∈ ℝ* ∧ inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*) → (𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))))
5010, 9, 49syl2anc 693 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))))
5147, 50mtod 189 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ 𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ))
529, 10, 51xrnltled 10106 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐴)
534simp2d 1074 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
5410adantr 481 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ∈ ℝ*)
55 ixxub.5 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
5654, 5, 55syl2anc 693 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝐴𝑅𝑤𝐴𝑤))
5753, 56mpd 15 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑤)
5857ralrimiva 2966 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤)
59 infxrgelb 12165 . . . 4 (((𝐴𝑂𝐵) ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ) ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤))
607, 10, 59syl2anc 693 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ) ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤))
6158, 60mpbird 247 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ))
629, 10, 52, 61xrletrid 11986 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  (class class class)co 6650  cmpt2 6652  infcinf 8347  *cxr 10073   < clt 10074  cle 10075  cq 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789
This theorem is referenced by:  ioorf  23341  ioorinv2  23343  ioossioobi  39743
  Copyright terms: Public domain W3C validator