MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx1stc Structured version   Visualization version   GIF version

Theorem tx1stc 21453
Description: The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx1stc ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ×t 𝑆) ∈ 1st𝜔)

Proof of Theorem tx1stc
Dummy variables 𝑎 𝑏 𝑚 𝑛 𝑝 𝑞 𝑟 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 21246 . . 3 (𝑅 ∈ 1st𝜔 → 𝑅 ∈ Top)
2 1stctop 21246 . . 3 (𝑆 ∈ 1st𝜔 → 𝑆 ∈ Top)
3 txtop 21372 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 494 . 2 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2622 . . . . . . . 8 𝑅 = 𝑅
651stcclb 21247 . . . . . . 7 ((𝑅 ∈ 1st𝜔 ∧ 𝑢 𝑅) → ∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))))
76ad2ant2r 783 . . . . . 6 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))))
8 eqid 2622 . . . . . . . 8 𝑆 = 𝑆
981stcclb 21247 . . . . . . 7 ((𝑆 ∈ 1st𝜔 ∧ 𝑣 𝑆) → ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
109ad2ant2l 782 . . . . . 6 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
11 reeanv 3107 . . . . . . 7 (∃𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ↔ (∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))))
12 an4 865 . . . . . . . . 9 (((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ↔ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))))
13 txopn 21405 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑚𝑅𝑛𝑆)) → (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
1413ralrimivva 2971 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
151, 2, 14syl2an 494 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
1615adantr 481 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
17 elpwi 4168 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ 𝒫 𝑅𝑎𝑅)
18 ssralv 3666 . . . . . . . . . . . . . . . . . 18 (𝑎𝑅 → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
1917, 18syl 17 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ 𝒫 𝑅 → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
20 elpwi 4168 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ 𝒫 𝑆𝑏𝑆)
21 ssralv 3666 . . . . . . . . . . . . . . . . . . 19 (𝑏𝑆 → (∀𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ 𝒫 𝑆 → (∀𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2322ralimdv 2963 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ 𝒫 𝑆 → (∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2419, 23sylan9 689 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆) → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2516, 24mpan9 486 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
26 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) = (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))
2726fmpt2 7237 . . . . . . . . . . . . . . 15 (∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) ↔ (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆))
2825, 27sylib 208 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆))
29 frn 6053 . . . . . . . . . . . . . 14 ((𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆))
3028, 29syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆))
31 ovex 6678 . . . . . . . . . . . . . 14 (𝑅 ×t 𝑆) ∈ V
3231elpw2 4828 . . . . . . . . . . . . 13 (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆) ↔ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆))
3330, 32sylibr 224 . . . . . . . . . . . 12 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆))
3433adantr 481 . . . . . . . . . . 11 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆))
35 omelon 8543 . . . . . . . . . . . . . . 15 ω ∈ On
36 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ V
3736xpdom1 8059 . . . . . . . . . . . . . . . . 17 (𝑎 ≼ ω → (𝑎 × 𝑏) ≼ (ω × 𝑏))
38 omex 8540 . . . . . . . . . . . . . . . . . 18 ω ∈ V
3938xpdom2 8055 . . . . . . . . . . . . . . . . 17 (𝑏 ≼ ω → (ω × 𝑏) ≼ (ω × ω))
40 domtr 8009 . . . . . . . . . . . . . . . . 17 (((𝑎 × 𝑏) ≼ (ω × 𝑏) ∧ (ω × 𝑏) ≼ (ω × ω)) → (𝑎 × 𝑏) ≼ (ω × ω))
4137, 39, 40syl2an 494 . . . . . . . . . . . . . . . 16 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ≼ (ω × ω))
42 xpomen 8838 . . . . . . . . . . . . . . . 16 (ω × ω) ≈ ω
43 domentr 8015 . . . . . . . . . . . . . . . 16 (((𝑎 × 𝑏) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑎 × 𝑏) ≼ ω)
4441, 42, 43sylancl 694 . . . . . . . . . . . . . . 15 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ≼ ω)
45 ondomen 8860 . . . . . . . . . . . . . . 15 ((ω ∈ On ∧ (𝑎 × 𝑏) ≼ ω) → (𝑎 × 𝑏) ∈ dom card)
4635, 44, 45sylancr 695 . . . . . . . . . . . . . 14 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ∈ dom card)
47 vex 3203 . . . . . . . . . . . . . . . . 17 𝑚 ∈ V
48 vex 3203 . . . . . . . . . . . . . . . . 17 𝑛 ∈ V
4947, 48xpex 6962 . . . . . . . . . . . . . . . 16 (𝑚 × 𝑛) ∈ V
5026, 49fnmpt2i 7239 . . . . . . . . . . . . . . 15 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) Fn (𝑎 × 𝑏)
51 dffn4 6121 . . . . . . . . . . . . . . 15 ((𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) Fn (𝑎 × 𝑏) ↔ (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)))
5250, 51mpbi 220 . . . . . . . . . . . . . 14 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))
53 fodomnum 8880 . . . . . . . . . . . . . 14 ((𝑎 × 𝑏) ∈ dom card → ((𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏)))
5446, 52, 53mpisyl 21 . . . . . . . . . . . . 13 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏))
55 domtr 8009 . . . . . . . . . . . . 13 ((ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
5654, 44, 55syl2anc 693 . . . . . . . . . . . 12 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
5756ad2antrl 764 . . . . . . . . . . 11 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
581, 2anim12i 590 . . . . . . . . . . . . . . 15 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ∈ Top ∧ 𝑆 ∈ Top))
5958ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑅 ∈ Top ∧ 𝑆 ∈ Top))
60 eltx 21371 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑧 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
6159, 60syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑧 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
62 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑤 = ⟨𝑢, 𝑣⟩ → (𝑤 ∈ (𝑟 × 𝑠) ↔ ⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠)))
6362anbi1d 741 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨𝑢, 𝑣⟩ → ((𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
64632rexbidv 3057 . . . . . . . . . . . . . . 15 (𝑤 = ⟨𝑢, 𝑣⟩ → (∃𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) ↔ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
6564rspccv 3306 . . . . . . . . . . . . . 14 (∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
66 r19.27v 3070 . . . . . . . . . . . . . . . . . 18 ((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → ∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
67 r19.29 3072 . . . . . . . . . . . . . . . . . . 19 ((∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅 (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
68 r19.29 3072 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
69 opelxp 5146 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ↔ (𝑢𝑟𝑣𝑠))
70 pm3.35 611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑟 ∧ (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))
71 pm3.35 611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑣𝑠 ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))
7270, 71anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑢𝑟 ∧ (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑣𝑠 ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
7372an4s 869 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑢𝑟𝑣𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
7469, 73sylanb 489 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
7574anim1i 592 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7675anasss 679 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7776an12s 843 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7877expl 648 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → (((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
7978reximdv 3016 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → (∃𝑠𝑆 ((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
8068, 79syl5 34 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → ((∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
8180impl 650 . . . . . . . . . . . . . . . . . . . 20 ((((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
8281reximi 3011 . . . . . . . . . . . . . . . . . . 19 (∃𝑟𝑅 (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
8367, 82syl 17 . . . . . . . . . . . . . . . . . 18 ((∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
8466, 83sylan 488 . . . . . . . . . . . . . . . . 17 (((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
85 reeanv 3107 . . . . . . . . . . . . . . . . . . . 20 (∃𝑝𝑎𝑞𝑏 ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ↔ (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
86 simpr1l 1118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 𝑝𝑎)
87 simpr1r 1119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 𝑞𝑏)
88 eqidd 2623 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) = (𝑝 × 𝑞))
89 xpeq1 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 = 𝑝 → (𝑚 × 𝑛) = (𝑝 × 𝑛))
9089eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑝 → ((𝑝 × 𝑞) = (𝑚 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑝 × 𝑛)))
91 xpeq2 5129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑞 → (𝑝 × 𝑛) = (𝑝 × 𝑞))
9291eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑞 → ((𝑝 × 𝑞) = (𝑝 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑝 × 𝑞)))
9390, 92rspc2ev 3324 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝𝑎𝑞𝑏 ∧ (𝑝 × 𝑞) = (𝑝 × 𝑞)) → ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
9486, 87, 88, 93syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
95 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑝 ∈ V
96 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑞 ∈ V
9795, 96xpex 6962 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 × 𝑞) ∈ V
98 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑝 × 𝑞) → (𝑥 = (𝑚 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑚 × 𝑛)))
99982rexbidv 3057 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑝 × 𝑞) → (∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛) ↔ ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛)))
10097, 99elab 3350 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑝 × 𝑞) ∈ {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)} ↔ ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
10194, 100sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ∈ {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)})
10226rnmpt2 6770 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) = {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)}
103101, 102syl6eleqr 2712 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)))
104 simpr2 1068 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)))
105 opelxpi 5148 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢𝑝𝑣𝑞) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
106105ad2ant2r 783 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
107104, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
108 xpss12 5225 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝𝑟𝑞𝑠) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
109108ad2ant2l 782 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
110104, 109syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
111 simpr3 1069 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑟 × 𝑠) ⊆ 𝑧)
112110, 111sstrd 3613 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ⊆ 𝑧)
113 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑝 × 𝑞) → (⟨𝑢, 𝑣⟩ ∈ 𝑤 ↔ ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞)))
114 sseq1 3626 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑝 × 𝑞) → (𝑤𝑧 ↔ (𝑝 × 𝑞) ⊆ 𝑧))
115113, 114anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑝 × 𝑞) → ((⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞) ∧ (𝑝 × 𝑞) ⊆ 𝑧)))
116115rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝 × 𝑞) ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞) ∧ (𝑝 × 𝑞) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))
117103, 107, 112, 116syl12anc 1324 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))
1181173exp2 1285 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝑝𝑎𝑞𝑏) → (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
119118rexlimdvv 3037 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → (∃𝑝𝑎𝑞𝑏 ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
12085, 119syl5bir 233 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
121120impd 447 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → (((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
122121rexlimdvva 3038 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → (∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
12384, 122syl5 34 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → (((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
124123expd 452 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → ((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → (∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
125124impr 649 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
12665, 125syl9r 78 . . . . . . . . . . . . 13 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
12761, 126sylbid 230 . . . . . . . . . . . 12 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑧 ∈ (𝑅 ×t 𝑆) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
128127ralrimiv 2965 . . . . . . . . . . 11 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
129 breq1 4656 . . . . . . . . . . . . 13 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (𝑦 ≼ ω ↔ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω))
130 rexeq 3139 . . . . . . . . . . . . . . 15 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
131130imbi2d 330 . . . . . . . . . . . . . 14 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ((⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
132131ralbidv 2986 . . . . . . . . . . . . 13 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
133129, 132anbi12d 747 . . . . . . . . . . . 12 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))) ↔ (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
134133rspcev 3309 . . . . . . . . . . 11 ((ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
13534, 57, 128, 134syl12anc 1324 . . . . . . . . . 10 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
136135ex 450 . . . . . . . . 9 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
13712, 136syl5bi 232 . . . . . . . 8 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
138137rexlimdvva 3038 . . . . . . 7 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → (∃𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
13911, 138syl5bir 233 . . . . . 6 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ((∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
1407, 10, 139mp2and 715 . . . . 5 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
141140ralrimivva 2971 . . . 4 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ∀𝑢 𝑅𝑣 𝑆𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
142 eleq1 2689 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝑥𝑧 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑧))
143 eleq1 2689 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝑥𝑤 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑤))
144143anbi1d 741 . . . . . . . . . 10 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑤𝑤𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
145144rexbidv 3052 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
146142, 145imbi12d 334 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
147146ralbidv 2986 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → (∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
148147anbi2d 740 . . . . . 6 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
149148rexbidv 3052 . . . . 5 (𝑥 = ⟨𝑢, 𝑣⟩ → (∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
150149ralxp 5263 . . . 4 (∀𝑥 ∈ ( 𝑅 × 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ∀𝑢 𝑅𝑣 𝑆𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
151141, 150sylibr 224 . . 3 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ∀𝑥 ∈ ( 𝑅 × 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1525, 8txuni 21395 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
1531, 2, 152syl2an 494 . . . 4 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
154153raleqdv 3144 . . 3 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (∀𝑥 ∈ ( 𝑅 × 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ∀𝑥 (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
155151, 154mpbid 222 . 2 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ∀𝑥 (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
156 eqid 2622 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
157156is1stc2 21245 . 2 ((𝑅 ×t 𝑆) ∈ 1st𝜔 ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑥 (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
1584, 155, 157sylanbrc 698 1 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ×t 𝑆) ∈ 1st𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  wss 3574  𝒫 cpw 4158  cop 4183   cuni 4436   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115  Oncon0 5723   Fn wfn 5883  wf 5884  ontowfo 5886  (class class class)co 6650  cmpt2 6652  ωcom 7065  cen 7952  cdom 7953  cardccrd 8761  Topctop 20698  1st𝜔c1stc 21240   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-1stc 21242  df-tx 21365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator