| Step | Hyp | Ref
| Expression |
| 1 | | 1stctop 21246 |
. . 3
⊢ (𝑅 ∈ 1st𝜔
→ 𝑅 ∈
Top) |
| 2 | | 1stctop 21246 |
. . 3
⊢ (𝑆 ∈ 1st𝜔
→ 𝑆 ∈
Top) |
| 3 | | txtop 21372 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| 4 | 1, 2, 3 | syl2an 494 |
. 2
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → (𝑅 ×t 𝑆) ∈ Top) |
| 5 | | eqid 2622 |
. . . . . . . 8
⊢ ∪ 𝑅 =
∪ 𝑅 |
| 6 | 5 | 1stcclb 21247 |
. . . . . . 7
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑢 ∈ ∪ 𝑅)
→ ∃𝑎 ∈
𝒫 𝑅(𝑎 ≼ ω ∧
∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)))) |
| 7 | 6 | ad2ant2r 783 |
. . . . . 6
⊢ (((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) → ∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)))) |
| 8 | | eqid 2622 |
. . . . . . . 8
⊢ ∪ 𝑆 =
∪ 𝑆 |
| 9 | 8 | 1stcclb 21247 |
. . . . . . 7
⊢ ((𝑆 ∈ 1st𝜔
∧ 𝑣 ∈ ∪ 𝑆)
→ ∃𝑏 ∈
𝒫 𝑆(𝑏 ≼ ω ∧
∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) |
| 10 | 9 | ad2ant2l 782 |
. . . . . 6
⊢ (((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) → ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) |
| 11 | | reeanv 3107 |
. . . . . . 7
⊢
(∃𝑎 ∈
𝒫 𝑅∃𝑏 ∈ 𝒫 𝑆((𝑎 ≼ ω ∧ ∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) ↔ (∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟))) ∧ ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) |
| 12 | | an4 865 |
. . . . . . . . 9
⊢ (((𝑎 ≼ ω ∧
∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) ↔ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) |
| 13 | | txopn 21405 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑚 ∈ 𝑅 ∧ 𝑛 ∈ 𝑆)) → (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)) |
| 14 | 13 | ralrimivva 2971 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
∀𝑚 ∈ 𝑅 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)) |
| 15 | 1, 2, 14 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → ∀𝑚 ∈ 𝑅 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)) |
| 16 | 15 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) → ∀𝑚 ∈ 𝑅 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)) |
| 17 | | elpwi 4168 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ 𝒫 𝑅 → 𝑎 ⊆ 𝑅) |
| 18 | | ssralv 3666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ⊆ 𝑅 → (∀𝑚 ∈ 𝑅 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚 ∈ 𝑎 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ 𝒫 𝑅 → (∀𝑚 ∈ 𝑅 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚 ∈ 𝑎 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))) |
| 20 | | elpwi 4168 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ 𝒫 𝑆 → 𝑏 ⊆ 𝑆) |
| 21 | | ssralv 3666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ⊆ 𝑆 → (∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑛 ∈ 𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ 𝒫 𝑆 → (∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑛 ∈ 𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))) |
| 23 | 22 | ralimdv 2963 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ 𝒫 𝑆 → (∀𝑚 ∈ 𝑎 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚 ∈ 𝑎 ∀𝑛 ∈ 𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))) |
| 24 | 19, 23 | sylan9 689 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆) → (∀𝑚 ∈ 𝑅 ∀𝑛 ∈ 𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚 ∈ 𝑎 ∀𝑛 ∈ 𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))) |
| 25 | 16, 24 | mpan9 486 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) → ∀𝑚 ∈ 𝑎 ∀𝑛 ∈ 𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)) |
| 26 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) = (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) |
| 27 | 26 | fmpt2 7237 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑚 ∈
𝑎 ∀𝑛 ∈ 𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) ↔ (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆)) |
| 28 | 25, 27 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) → (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆)) |
| 29 | | frn 6053 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆) → ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆)) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) → ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆)) |
| 31 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ×t 𝑆) ∈ V |
| 32 | 31 | elpw2 4828 |
. . . . . . . . . . . . 13
⊢ (ran
(𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆) ↔ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆)) |
| 33 | 30, 32 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) → ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆)) |
| 34 | 33 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆)) |
| 35 | | omelon 8543 |
. . . . . . . . . . . . . . 15
⊢ ω
∈ On |
| 36 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ V |
| 37 | 36 | xpdom1 8059 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ≼ ω → (𝑎 × 𝑏) ≼ (ω × 𝑏)) |
| 38 | | omex 8540 |
. . . . . . . . . . . . . . . . . 18
⊢ ω
∈ V |
| 39 | 38 | xpdom2 8055 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ≼ ω → (ω
× 𝑏) ≼ (ω
× ω)) |
| 40 | | domtr 8009 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 × 𝑏) ≼ (ω × 𝑏) ∧ (ω × 𝑏) ≼ (ω × ω)) →
(𝑎 × 𝑏) ≼ (ω ×
ω)) |
| 41 | 37, 39, 40 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ≼ (ω ×
ω)) |
| 42 | | xpomen 8838 |
. . . . . . . . . . . . . . . 16
⊢ (ω
× ω) ≈ ω |
| 43 | | domentr 8015 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 × 𝑏) ≼ (ω × ω) ∧
(ω × ω) ≈ ω) → (𝑎 × 𝑏) ≼ ω) |
| 44 | 41, 42, 43 | sylancl 694 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ≼ ω) |
| 45 | | ondomen 8860 |
. . . . . . . . . . . . . . 15
⊢ ((ω
∈ On ∧ (𝑎 ×
𝑏) ≼ ω) →
(𝑎 × 𝑏) ∈ dom
card) |
| 46 | 35, 44, 45 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ∈ dom card) |
| 47 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑚 ∈ V |
| 48 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑛 ∈ V |
| 49 | 47, 48 | xpex 6962 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 × 𝑛) ∈ V |
| 50 | 26, 49 | fnmpt2i 7239 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) Fn (𝑎 × 𝑏) |
| 51 | | dffn4 6121 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) Fn (𝑎 × 𝑏) ↔ (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))) |
| 52 | 50, 51 | mpbi 220 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) |
| 53 | | fodomnum 8880 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 × 𝑏) ∈ dom card → ((𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) → ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏))) |
| 54 | 46, 52, 53 | mpisyl 21 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → ran
(𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏)) |
| 55 | | domtr 8009 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ≼ ω) → ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ ω) |
| 56 | 54, 44, 55 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → ran
(𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ ω) |
| 57 | 56 | ad2antrl 764 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ ω) |
| 58 | 1, 2 | anim12i 590 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → (𝑅 ∈ Top ∧ 𝑆 ∈ Top)) |
| 59 | 58 | ad3antrrr 766 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → (𝑅 ∈ Top ∧ 𝑆 ∈ Top)) |
| 60 | | eltx 21371 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑧 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑤 ∈ 𝑧 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → (𝑧 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑤 ∈ 𝑧 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 62 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 〈𝑢, 𝑣〉 → (𝑤 ∈ (𝑟 × 𝑠) ↔ 〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠))) |
| 63 | 62 | anbi1d 741 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 〈𝑢, 𝑣〉 → ((𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) ↔ (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 64 | 63 | 2rexbidv 3057 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 〈𝑢, 𝑣〉 → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 65 | 64 | rspccv 3306 |
. . . . . . . . . . . . . 14
⊢
(∀𝑤 ∈
𝑧 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → (〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 66 | | r19.27v 3070 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑟 ∈
𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) → ∀𝑟 ∈ 𝑅 ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) |
| 67 | | r19.29 3072 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑟 ∈
𝑅 ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟 ∈ 𝑅 (((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 68 | | r19.29 3072 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑠 ∈
𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠 ∈ 𝑆 ((𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 69 | | opelxp 5146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ↔ (𝑢 ∈ 𝑟 ∧ 𝑣 ∈ 𝑠)) |
| 70 | | pm3.35 611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑢 ∈ 𝑟 ∧ (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟))) → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) |
| 71 | | pm3.35 611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑣 ∈ 𝑠 ∧ (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) |
| 72 | 70, 71 | anim12i 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑢 ∈ 𝑟 ∧ (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟))) ∧ (𝑣 ∈ 𝑠 ∧ (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) → (∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) |
| 73 | 72 | an4s 869 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑢 ∈ 𝑟 ∧ 𝑣 ∈ 𝑠) ∧ ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) → (∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) |
| 74 | 69, 73 | sylanb 489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) → (∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) |
| 75 | 74 | anim1i 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) |
| 76 | 75 | anasss 679 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) |
| 77 | 76 | an12s 843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) |
| 78 | 77 | expl 648 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) → (((𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 79 | 78 | reximdv 3016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) → (∃𝑠 ∈ 𝑆 ((𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠 ∈ 𝑆 ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 80 | 68, 79 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) → ((∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠 ∈ 𝑆 ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))) |
| 81 | 80 | impl 650 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠 ∈ 𝑆 ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) |
| 82 | 81 | reximi 3011 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑟 ∈
𝑅 (((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) |
| 83 | 67, 82 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑟 ∈
𝑅 ((𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) |
| 84 | 66, 83 | sylan 488 |
. . . . . . . . . . . . . . . . 17
⊢
(((∀𝑟 ∈
𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) |
| 85 | | reeanv 3107 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑝 ∈
𝑎 ∃𝑞 ∈ 𝑏 ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ↔ (∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) |
| 86 | | simpr1l 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 𝑝 ∈ 𝑎) |
| 87 | | simpr1r 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 𝑞 ∈ 𝑏) |
| 88 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) = (𝑝 × 𝑞)) |
| 89 | | xpeq1 5128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 = 𝑝 → (𝑚 × 𝑛) = (𝑝 × 𝑛)) |
| 90 | 89 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 = 𝑝 → ((𝑝 × 𝑞) = (𝑚 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑝 × 𝑛))) |
| 91 | | xpeq2 5129 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑞 → (𝑝 × 𝑛) = (𝑝 × 𝑞)) |
| 92 | 91 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 𝑞 → ((𝑝 × 𝑞) = (𝑝 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑝 × 𝑞))) |
| 93 | 90, 92 | rspc2ev 3324 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ∧ (𝑝 × 𝑞) = (𝑝 × 𝑞)) → ∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛)) |
| 94 | 86, 87, 88, 93 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛)) |
| 95 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑝 ∈ V |
| 96 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑞 ∈ V |
| 97 | 95, 96 | xpex 6962 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 × 𝑞) ∈ V |
| 98 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = (𝑝 × 𝑞) → (𝑥 = (𝑚 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑚 × 𝑛))) |
| 99 | 98 | 2rexbidv 3057 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (𝑝 × 𝑞) → (∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑏 𝑥 = (𝑚 × 𝑛) ↔ ∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))) |
| 100 | 97, 99 | elab 3350 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑝 × 𝑞) ∈ {𝑥 ∣ ∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑏 𝑥 = (𝑚 × 𝑛)} ↔ ∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛)) |
| 101 | 94, 100 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ∈ {𝑥 ∣ ∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑏 𝑥 = (𝑚 × 𝑛)}) |
| 102 | 26 | rnmpt2 6770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ran
(𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) = {𝑥 ∣ ∃𝑚 ∈ 𝑎 ∃𝑛 ∈ 𝑏 𝑥 = (𝑚 × 𝑛)} |
| 103 | 101, 102 | syl6eleqr 2712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))) |
| 104 | | simpr2 1068 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) |
| 105 | | opelxpi 5148 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 ∈ 𝑝 ∧ 𝑣 ∈ 𝑞) → 〈𝑢, 𝑣〉 ∈ (𝑝 × 𝑞)) |
| 106 | 105 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) → 〈𝑢, 𝑣〉 ∈ (𝑝 × 𝑞)) |
| 107 | 104, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 〈𝑢, 𝑣〉 ∈ (𝑝 × 𝑞)) |
| 108 | | xpss12 5225 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑝 ⊆ 𝑟 ∧ 𝑞 ⊆ 𝑠) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠)) |
| 109 | 108 | ad2ant2l 782 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠)) |
| 110 | 104, 109 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠)) |
| 111 | | simpr3 1069 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑟 × 𝑠) ⊆ 𝑧) |
| 112 | 110, 111 | sstrd 3613 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ⊆ 𝑧) |
| 113 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝑝 × 𝑞) → (〈𝑢, 𝑣〉 ∈ 𝑤 ↔ 〈𝑢, 𝑣〉 ∈ (𝑝 × 𝑞))) |
| 114 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝑝 × 𝑞) → (𝑤 ⊆ 𝑧 ↔ (𝑝 × 𝑞) ⊆ 𝑧)) |
| 115 | 113, 114 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑝 × 𝑞) → ((〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (〈𝑢, 𝑣〉 ∈ (𝑝 × 𝑞) ∧ (𝑝 × 𝑞) ⊆ 𝑧))) |
| 116 | 115 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑝 × 𝑞) ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ∧ (〈𝑢, 𝑣〉 ∈ (𝑝 × 𝑞) ∧ (𝑝 × 𝑞) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) |
| 117 | 103, 107,
112, 116 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) ∧ ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) |
| 118 | 117 | 3exp2 1285 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏) → (((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 119 | 118 | rexlimdvv 3037 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (∃𝑝 ∈ 𝑎 ∃𝑞 ∈ 𝑏 ((𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 120 | 85, 119 | syl5bir 233 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 121 | 120 | impd 447 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 122 | 121 | rexlimdvva 3038 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 ((∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟) ∧ ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 123 | 84, 122 | syl5 34 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → (((∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) ∧ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 124 | 123 | expd 452 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → ((∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))) → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 125 | 124 | impr 649 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑢, 𝑣〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 126 | 65, 125 | syl9r 78 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → (∀𝑤 ∈ 𝑧 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → (〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 127 | 61, 126 | sylbid 230 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → (𝑧 ∈ (𝑅 ×t 𝑆) → (〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 128 | 127 | ralrimiv 2965 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 129 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) → (𝑦 ≼ ω ↔ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)) |
| 130 | | rexeq 3139 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) → (∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 131 | 130 | imbi2d 330 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) → ((〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 132 | 131 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) → (∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 133 | 129, 132 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑦 = ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ (ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 134 | 133 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((ran
(𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛)) ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚 ∈ 𝑎, 𝑛 ∈ 𝑏 ↦ (𝑚 × 𝑛))(〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 135 | 34, 57, 128, 134 | syl12anc 1324 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧
(𝑢 ∈ ∪ 𝑅
∧ 𝑣 ∈ ∪ 𝑆))
∧ (𝑎 ∈ 𝒫
𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠))))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 136 | 135 | ex 450 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) → (((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟)) ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 137 | 12, 136 | syl5bi 232 |
. . . . . . . 8
⊢ ((((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆)) → (((𝑎 ≼ ω ∧ ∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 138 | 137 | rexlimdvva 3038 |
. . . . . . 7
⊢ (((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) → (∃𝑎 ∈ 𝒫 𝑅∃𝑏 ∈ 𝒫 𝑆((𝑎 ≼ ω ∧ ∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 139 | 11, 138 | syl5bir 233 |
. . . . . 6
⊢ (((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) → ((∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟 ∈ 𝑅 (𝑢 ∈ 𝑟 → ∃𝑝 ∈ 𝑎 (𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟))) ∧ ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠 ∈ 𝑆 (𝑣 ∈ 𝑠 → ∃𝑞 ∈ 𝑏 (𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 140 | 7, 10, 139 | mp2and 715 |
. . . . 5
⊢ (((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) ∧ (𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆)) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 141 | 140 | ralrimivva 2971 |
. . . 4
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → ∀𝑢 ∈ ∪ 𝑅∀𝑣 ∈ ∪ 𝑆∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 142 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (𝑥 ∈ 𝑧 ↔ 〈𝑢, 𝑣〉 ∈ 𝑧)) |
| 143 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (𝑥 ∈ 𝑤 ↔ 〈𝑢, 𝑣〉 ∈ 𝑤)) |
| 144 | 143 | anbi1d 741 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝑢, 𝑣〉 → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 145 | 144 | rexbidv 3052 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 146 | 142, 145 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑥 = 〈𝑢, 𝑣〉 → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 147 | 146 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 148 | 147 | anbi2d 740 |
. . . . . 6
⊢ (𝑥 = 〈𝑢, 𝑣〉 → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 149 | 148 | rexbidv 3052 |
. . . . 5
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 150 | 149 | ralxp 5263 |
. . . 4
⊢
(∀𝑥 ∈
(∪ 𝑅 × ∪ 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ ∀𝑢 ∈ ∪ 𝑅∀𝑣 ∈ ∪ 𝑆∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(〈𝑢, 𝑣〉 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (〈𝑢, 𝑣〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 151 | 141, 150 | sylibr 224 |
. . 3
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → ∀𝑥 ∈ (∪ 𝑅 × ∪ 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 152 | 5, 8 | txuni 21395 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∪ 𝑅
× ∪ 𝑆) = ∪ (𝑅 ×t 𝑆)) |
| 153 | 1, 2, 152 | syl2an 494 |
. . . 4
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → (∪ 𝑅 × ∪ 𝑆) = ∪
(𝑅 ×t
𝑆)) |
| 154 | 153 | raleqdv 3144 |
. . 3
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → (∀𝑥 ∈ (∪ 𝑅 × ∪ 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ ∀𝑥 ∈ ∪ (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 155 | 151, 154 | mpbid 222 |
. 2
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → ∀𝑥 ∈ ∪ (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 156 | | eqid 2622 |
. . 3
⊢ ∪ (𝑅
×t 𝑆) =
∪ (𝑅 ×t 𝑆) |
| 157 | 156 | is1stc2 21245 |
. 2
⊢ ((𝑅 ×t 𝑆) ∈ 1st𝜔
↔ ((𝑅
×t 𝑆)
∈ Top ∧ ∀𝑥
∈ ∪ (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 158 | 4, 155, 157 | sylanbrc 698 |
1
⊢ ((𝑅 ∈ 1st𝜔
∧ 𝑆 ∈
1st𝜔) → (𝑅 ×t 𝑆) ∈
1st𝜔) |