MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txnlly Structured version   Visualization version   GIF version

Theorem txnlly 21440
Description: If the property 𝐴 is preserved under topological products, then so is the property of being n-locally 𝐴. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
txlly.1 ((𝑗𝐴𝑘𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴)
Assertion
Ref Expression
txnlly ((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) → (𝑅 ×t 𝑆) ∈ 𝑛-Locally 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝑅,𝑗,𝑘   𝑆,𝑘
Allowed substitution hint:   𝑆(𝑗)

Proof of Theorem txnlly
Dummy variables 𝑎 𝑏 𝑟 𝑠 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 21276 . . 3 (𝑅 ∈ 𝑛-Locally 𝐴𝑅 ∈ Top)
2 nllytop 21276 . . 3 (𝑆 ∈ 𝑛-Locally 𝐴𝑆 ∈ Top)
3 txtop 21372 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 494 . 2 ((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Top)
5 eltx 21371 . . . 4 ((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥)))
6 simpll 790 . . . . . . . . 9 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑅 ∈ 𝑛-Locally 𝐴)
7 simprll 802 . . . . . . . . 9 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑢𝑅)
8 simprrl 804 . . . . . . . . . 10 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑦 ∈ (𝑢 × 𝑣))
9 xp1st 7198 . . . . . . . . . 10 (𝑦 ∈ (𝑢 × 𝑣) → (1st𝑦) ∈ 𝑢)
108, 9syl 17 . . . . . . . . 9 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (1st𝑦) ∈ 𝑢)
11 nlly2i 21279 . . . . . . . . 9 ((𝑅 ∈ 𝑛-Locally 𝐴𝑢𝑅 ∧ (1st𝑦) ∈ 𝑢) → ∃𝑎 ∈ 𝒫 𝑢𝑟𝑅 ((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴))
126, 7, 10, 11syl3anc 1326 . . . . . . . 8 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑎 ∈ 𝒫 𝑢𝑟𝑅 ((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴))
13 simplr 792 . . . . . . . . 9 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑆 ∈ 𝑛-Locally 𝐴)
14 simprlr 803 . . . . . . . . 9 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑣𝑆)
15 xp2nd 7199 . . . . . . . . . 10 (𝑦 ∈ (𝑢 × 𝑣) → (2nd𝑦) ∈ 𝑣)
168, 15syl 17 . . . . . . . . 9 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (2nd𝑦) ∈ 𝑣)
17 nlly2i 21279 . . . . . . . . 9 ((𝑆 ∈ 𝑛-Locally 𝐴𝑣𝑆 ∧ (2nd𝑦) ∈ 𝑣) → ∃𝑏 ∈ 𝒫 𝑣𝑠𝑆 ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))
1813, 14, 16, 17syl3anc 1326 . . . . . . . 8 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑏 ∈ 𝒫 𝑣𝑠𝑆 ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))
19 reeanv 3107 . . . . . . . . 9 (∃𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣(∃𝑟𝑅 ((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ∃𝑠𝑆 ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)) ↔ (∃𝑎 ∈ 𝒫 𝑢𝑟𝑅 ((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ∃𝑏 ∈ 𝒫 𝑣𝑠𝑆 ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)))
20 reeanv 3107 . . . . . . . . . . 11 (∃𝑟𝑅𝑠𝑆 (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)) ↔ (∃𝑟𝑅 ((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ∃𝑠𝑆 ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)))
214ad3antrrr 766 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑅 ×t 𝑆) ∈ Top)
221ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑅 ∈ Top)
2322ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑅 ∈ Top)
2413, 2syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑆 ∈ Top)
2524ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑆 ∈ Top)
26 simprrl 804 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) → 𝑟𝑅)
2726adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑟𝑅)
28 simprrr 805 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) → 𝑠𝑆)
2928adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑠𝑆)
30 txopn 21405 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑟𝑅𝑠𝑆)) → (𝑟 × 𝑠) ∈ (𝑅 ×t 𝑆))
3123, 25, 27, 29, 30syl22anc 1327 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑟 × 𝑠) ∈ (𝑅 ×t 𝑆))
328ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑦 ∈ (𝑢 × 𝑣))
33 1st2nd2 7205 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑢 × 𝑣) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3432, 33syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
35 simprl1 1106 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (1st𝑦) ∈ 𝑟)
36 simprr1 1109 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (2nd𝑦) ∈ 𝑠)
37 opelxpi 5148 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑦) ∈ 𝑟 ∧ (2nd𝑦) ∈ 𝑠) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑟 × 𝑠))
3835, 36, 37syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑟 × 𝑠))
3934, 38eqeltrd 2701 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑦 ∈ (𝑟 × 𝑠))
40 opnneip 20923 . . . . . . . . . . . . . . . . . 18 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑟 × 𝑠) ∈ (𝑅 ×t 𝑆) ∧ 𝑦 ∈ (𝑟 × 𝑠)) → (𝑟 × 𝑠) ∈ ((nei‘(𝑅 ×t 𝑆))‘{𝑦}))
4121, 31, 39, 40syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑟 × 𝑠) ∈ ((nei‘(𝑅 ×t 𝑆))‘{𝑦}))
42 simprl2 1107 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑟𝑎)
43 simprr2 1110 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑠𝑏)
44 xpss12 5225 . . . . . . . . . . . . . . . . . 18 ((𝑟𝑎𝑠𝑏) → (𝑟 × 𝑠) ⊆ (𝑎 × 𝑏))
4542, 43, 44syl2anc 693 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑟 × 𝑠) ⊆ (𝑎 × 𝑏))
46 simprll 802 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) → 𝑎 ∈ 𝒫 𝑢)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑎 ∈ 𝒫 𝑢)
4847elpwid 4170 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑎𝑢)
497ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑢𝑅)
50 elssuni 4467 . . . . . . . . . . . . . . . . . . . . 21 (𝑢𝑅𝑢 𝑅)
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑢 𝑅)
5248, 51sstrd 3613 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑎 𝑅)
53 simprlr 803 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) → 𝑏 ∈ 𝒫 𝑣)
5453adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑏 ∈ 𝒫 𝑣)
5554elpwid 4170 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑏𝑣)
5614ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑣𝑆)
57 elssuni 4467 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝑆𝑣 𝑆)
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑣 𝑆)
5955, 58sstrd 3613 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → 𝑏 𝑆)
60 xpss12 5225 . . . . . . . . . . . . . . . . . . 19 ((𝑎 𝑅𝑏 𝑆) → (𝑎 × 𝑏) ⊆ ( 𝑅 × 𝑆))
6152, 59, 60syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑎 × 𝑏) ⊆ ( 𝑅 × 𝑆))
62 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 𝑅 = 𝑅
63 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 𝑆 = 𝑆
6462, 63txuni 21395 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
6523, 25, 64syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
6661, 65sseqtrd 3641 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑎 × 𝑏) ⊆ (𝑅 ×t 𝑆))
67 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
6867ssnei2 20920 . . . . . . . . . . . . . . . . 17 ((((𝑅 ×t 𝑆) ∈ Top ∧ (𝑟 × 𝑠) ∈ ((nei‘(𝑅 ×t 𝑆))‘{𝑦})) ∧ ((𝑟 × 𝑠) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝑅 ×t 𝑆))) → (𝑎 × 𝑏) ∈ ((nei‘(𝑅 ×t 𝑆))‘{𝑦}))
6921, 41, 45, 66, 68syl22anc 1327 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑎 × 𝑏) ∈ ((nei‘(𝑅 ×t 𝑆))‘{𝑦}))
70 xpss12 5225 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑢𝑏𝑣) → (𝑎 × 𝑏) ⊆ (𝑢 × 𝑣))
7148, 55, 70syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑎 × 𝑏) ⊆ (𝑢 × 𝑣))
72 simprrr 805 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (𝑢 × 𝑣) ⊆ 𝑥)
7372ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑢 × 𝑣) ⊆ 𝑥)
7471, 73sstrd 3613 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑎 × 𝑏) ⊆ 𝑥)
75 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
7675elpw2 4828 . . . . . . . . . . . . . . . . 17 ((𝑎 × 𝑏) ∈ 𝒫 𝑥 ↔ (𝑎 × 𝑏) ⊆ 𝑥)
7774, 76sylibr 224 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑎 × 𝑏) ∈ 𝒫 𝑥)
7869, 77elind 3798 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑎 × 𝑏) ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥))
79 txrest 21434 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣)) → ((𝑅 ×t 𝑆) ↾t (𝑎 × 𝑏)) = ((𝑅t 𝑎) ×t (𝑆t 𝑏)))
8023, 25, 47, 54, 79syl22anc 1327 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → ((𝑅 ×t 𝑆) ↾t (𝑎 × 𝑏)) = ((𝑅t 𝑎) ×t (𝑆t 𝑏)))
81 simprl3 1108 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑅t 𝑎) ∈ 𝐴)
82 simprr3 1111 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → (𝑆t 𝑏) ∈ 𝐴)
83 txlly.1 . . . . . . . . . . . . . . . . . 18 ((𝑗𝐴𝑘𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴)
8483caovcl 6828 . . . . . . . . . . . . . . . . 17 (((𝑅t 𝑎) ∈ 𝐴 ∧ (𝑆t 𝑏) ∈ 𝐴) → ((𝑅t 𝑎) ×t (𝑆t 𝑏)) ∈ 𝐴)
8581, 82, 84syl2anc 693 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → ((𝑅t 𝑎) ×t (𝑆t 𝑏)) ∈ 𝐴)
8680, 85eqeltrd 2701 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → ((𝑅 ×t 𝑆) ↾t (𝑎 × 𝑏)) ∈ 𝐴)
87 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎 × 𝑏) → ((𝑅 ×t 𝑆) ↾t 𝑧) = ((𝑅 ×t 𝑆) ↾t (𝑎 × 𝑏)))
8887eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑎 × 𝑏) → (((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴 ↔ ((𝑅 ×t 𝑆) ↾t (𝑎 × 𝑏)) ∈ 𝐴))
8988rspcev 3309 . . . . . . . . . . . . . . 15 (((𝑎 × 𝑏) ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝑅 ×t 𝑆) ↾t (𝑎 × 𝑏)) ∈ 𝐴) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)
9078, 86, 89syl2anc 693 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) ∧ (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴))) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)
9190ex 450 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣) ∧ (𝑟𝑅𝑠𝑆))) → ((((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
9291anassrs 680 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ (𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣)) ∧ (𝑟𝑅𝑠𝑆)) → ((((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
9392rexlimdvva 3038 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ (𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣)) → (∃𝑟𝑅𝑠𝑆 (((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
9420, 93syl5bir 233 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ (𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣)) → ((∃𝑟𝑅 ((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ∃𝑠𝑆 ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
9594rexlimdvva 3038 . . . . . . . . 9 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (∃𝑎 ∈ 𝒫 𝑢𝑏 ∈ 𝒫 𝑣(∃𝑟𝑅 ((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ∃𝑠𝑆 ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
9619, 95syl5bir 233 . . . . . . . 8 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ((∃𝑎 ∈ 𝒫 𝑢𝑟𝑅 ((1st𝑦) ∈ 𝑟𝑟𝑎 ∧ (𝑅t 𝑎) ∈ 𝐴) ∧ ∃𝑏 ∈ 𝒫 𝑣𝑠𝑆 ((2nd𝑦) ∈ 𝑠𝑠𝑏 ∧ (𝑆t 𝑏) ∈ 𝐴)) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
9712, 18, 96mp2and 715 . . . . . . 7 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)
9897expr 643 . . . . . 6 (((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) ∧ (𝑢𝑅𝑣𝑆)) → ((𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
9998rexlimdvva 3038 . . . . 5 ((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) → (∃𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∃𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
10099ralimdv 2963 . . . 4 ((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) → (∀𝑦𝑥𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∀𝑦𝑥𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
1015, 100sylbid 230 . . 3 ((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) → (𝑥 ∈ (𝑅 ×t 𝑆) → ∀𝑦𝑥𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
102101ralrimiv 2965 . 2 ((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) → ∀𝑥 ∈ (𝑅 ×t 𝑆)∀𝑦𝑥𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)
103 isnlly 21272 . 2 ((𝑅 ×t 𝑆) ∈ 𝑛-Locally 𝐴 ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑥 ∈ (𝑅 ×t 𝑆)∀𝑦𝑥𝑧 ∈ (((nei‘(𝑅 ×t 𝑆))‘{𝑦}) ∩ 𝒫 𝑥)((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
1044, 102, 103sylanbrc 698 1 ((𝑅 ∈ 𝑛-Locally 𝐴𝑆 ∈ 𝑛-Locally 𝐴) → (𝑅 ×t 𝑆) ∈ 𝑛-Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436   × cxp 5112  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  t crest 16081  Topctop 20698  neicnei 20901  𝑛-Locally cnlly 21268   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-nei 20902  df-nlly 21270  df-tx 21365
This theorem is referenced by:  xkohmeo  21618  cvmlift2lem13  31297
  Copyright terms: Public domain W3C validator