MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1en Structured version   Visualization version   GIF version

Theorem dif1en 8193
Description: If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano2 7086 . . . . 5 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
2 breq2 4657 . . . . . . 7 (𝑥 = suc 𝑀 → (𝐴𝑥𝐴 ≈ suc 𝑀))
32rspcev 3309 . . . . . 6 ((suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 7979 . . . . . 6 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
53, 4sylibr 224 . . . . 5 ((suc 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
61, 5sylan 488 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
7 diffi 8192 . . . . 5 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
8 isfi 7979 . . . . 5 ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
97, 8sylib 208 . . . 4 (𝐴 ∈ Fin → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
106, 9syl 17 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
11103adant3 1081 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥)
12 vex 3203 . . . . . . . 8 𝑥 ∈ V
13 en2sn 8037 . . . . . . . 8 ((𝑋𝐴𝑥 ∈ V) → {𝑋} ≈ {𝑥})
1412, 13mpan2 707 . . . . . . 7 (𝑋𝐴 → {𝑋} ≈ {𝑥})
15 nnord 7073 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
16 orddisj 5762 . . . . . . . 8 (Ord 𝑥 → (𝑥 ∩ {𝑥}) = ∅)
1715, 16syl 17 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∩ {𝑥}) = ∅)
18 incom 3805 . . . . . . . . . 10 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ({𝑋} ∩ (𝐴 ∖ {𝑋}))
19 disjdif 4040 . . . . . . . . . 10 ({𝑋} ∩ (𝐴 ∖ {𝑋})) = ∅
2018, 19eqtri 2644 . . . . . . . . 9 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅
21 unen 8040 . . . . . . . . . 10 ((((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ {𝑋} ≈ {𝑥}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2221an4s 869 . . . . . . . . 9 ((((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) ∧ ({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2320, 22mpanl2 717 . . . . . . . 8 (((𝐴 ∖ {𝑋}) ≈ 𝑥 ∧ ({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}))
2423expcom 451 . . . . . . 7 (({𝑋} ≈ {𝑥} ∧ (𝑥 ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
2514, 17, 24syl2an 494 . . . . . 6 ((𝑋𝐴𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
26253ad2antl3 1225 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥})))
27 difsnid 4341 . . . . . . . . 9 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
28 df-suc 5729 . . . . . . . . . . 11 suc 𝑥 = (𝑥 ∪ {𝑥})
2928eqcomi 2631 . . . . . . . . . 10 (𝑥 ∪ {𝑥}) = suc 𝑥
3029a1i 11 . . . . . . . . 9 (𝑋𝐴 → (𝑥 ∪ {𝑥}) = suc 𝑥)
3127, 30breq12d 4666 . . . . . . . 8 (𝑋𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
32313ad2ant3 1084 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
3332adantr 481 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) ↔ 𝐴 ≈ suc 𝑥))
34 ensym 8005 . . . . . . . . . . 11 (𝐴 ≈ suc 𝑀 → suc 𝑀𝐴)
35 entr 8008 . . . . . . . . . . . . 13 ((suc 𝑀𝐴𝐴 ≈ suc 𝑥) → suc 𝑀 ≈ suc 𝑥)
36 peano2 7086 . . . . . . . . . . . . . 14 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
37 nneneq 8143 . . . . . . . . . . . . . 14 ((suc 𝑀 ∈ ω ∧ suc 𝑥 ∈ ω) → (suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥))
3836, 37sylan2 491 . . . . . . . . . . . . 13 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 ≈ suc 𝑥 ↔ suc 𝑀 = suc 𝑥))
3935, 38syl5ib 234 . . . . . . . . . . . 12 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → ((suc 𝑀𝐴𝐴 ≈ suc 𝑥) → suc 𝑀 = suc 𝑥))
4039expd 452 . . . . . . . . . . 11 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀𝐴 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
4134, 40syl5 34 . . . . . . . . . 10 ((suc 𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
421, 41sylan 488 . . . . . . . . 9 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑀 → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥)))
4342imp 445 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴 ≈ suc 𝑀) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
4443an32s 846 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
45443adantl3 1219 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (𝐴 ≈ suc 𝑥 → suc 𝑀 = suc 𝑥))
4633, 45sylbid 230 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑥 ∪ {𝑥}) → suc 𝑀 = suc 𝑥))
47 peano4 7088 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
4847biimpd 219 . . . . . 6 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
49483ad2antl1 1223 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → (suc 𝑀 = suc 𝑥𝑀 = 𝑥))
5026, 46, 493syld 60 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥𝑀 = 𝑥))
51 breq2 4657 . . . . 5 (𝑀 = 𝑥 → ((𝐴 ∖ {𝑋}) ≈ 𝑀 ↔ (𝐴 ∖ {𝑋}) ≈ 𝑥))
5251biimprcd 240 . . . 4 ((𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝑀 = 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5350, 52sylcom 30 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑥 ∈ ω) → ((𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5453rexlimdva 3031 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (∃𝑥 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑥 → (𝐴 ∖ {𝑋}) ≈ 𝑀))
5511, 54mpd 15 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653  Ord word 5722  suc csuc 5725  ωcom 7065  cen 7952  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  enp1i  8195  findcard  8199  findcard2  8200  en2eleq  8831  en2other2  8832  mreexexlem4d  16307  f1otrspeq  17867  pmtrf  17875  pmtrmvd  17876  pmtrfinv  17881
  Copyright terms: Public domain W3C validator