MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsrest Structured version   Visualization version   GIF version

Theorem fclsrest 21828
Description: The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fclsrest ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fClus (𝐹t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌))

Proof of Theorem fclsrest
Dummy variables 𝑠 𝑡 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐽 ∈ (TopOn‘𝑋))
2 filelss 21656 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
323adant1 1079 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
4 resttopon 20965 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
51, 3, 4syl2anc 693 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
6 filfbas 21652 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
763ad2ant2 1083 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
8 simp3 1063 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
9 fbncp 21643 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
107, 8, 9syl2anc 693 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
11 simp2 1062 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
12 trfil3 21692 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1311, 3, 12syl2anc 693 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
1410, 13mpbird 247 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
15 fclsopn 21818 . . . . 5 (((𝐽t 𝑌) ∈ (TopOn‘𝑌) ∧ (𝐹t 𝑌) ∈ (Fil‘𝑌)) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅))))
165, 14, 15syl2anc 693 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅))))
17 in32 3825 . . . . . . . . . . . . . 14 ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ 𝑠)
18 ineq2 3808 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝑢𝑌) ∩ 𝑠) = ((𝑢𝑌) ∩ 𝑡))
1917, 18syl5eq 2668 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ 𝑡))
2019neeq1d 2853 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (((𝑢𝑠) ∩ 𝑌) ≠ ∅ ↔ ((𝑢𝑌) ∩ 𝑡) ≠ ∅))
2120rspccv 3306 . . . . . . . . . . 11 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → (𝑡𝐹 → ((𝑢𝑌) ∩ 𝑡) ≠ ∅))
22 inss1 3833 . . . . . . . . . . . . 13 (𝑢𝑌) ⊆ 𝑢
23 ssrin 3838 . . . . . . . . . . . . 13 ((𝑢𝑌) ⊆ 𝑢 → ((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡))
2422, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡)
25 ssn0 3976 . . . . . . . . . . . 12 ((((𝑢𝑌) ∩ 𝑡) ⊆ (𝑢𝑡) ∧ ((𝑢𝑌) ∩ 𝑡) ≠ ∅) → (𝑢𝑡) ≠ ∅)
2624, 25mpan 706 . . . . . . . . . . 11 (((𝑢𝑌) ∩ 𝑡) ≠ ∅ → (𝑢𝑡) ≠ ∅)
2721, 26syl6 35 . . . . . . . . . 10 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → (𝑡𝐹 → (𝑢𝑡) ≠ ∅))
2827ralrimiv 2965 . . . . . . . . 9 (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)
2911ad3antrrr 766 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝐹 ∈ (Fil‘𝑋))
30 simpr 477 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝑠𝐹)
318ad3antrrr 766 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → 𝑌𝐹)
32 filin 21658 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹𝑌𝐹) → (𝑠𝑌) ∈ 𝐹)
3329, 30, 31, 32syl3anc 1326 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ 𝐹)
34 ineq2 3808 . . . . . . . . . . . . . 14 (𝑡 = (𝑠𝑌) → (𝑢𝑡) = (𝑢 ∩ (𝑠𝑌)))
35 inass 3823 . . . . . . . . . . . . . 14 ((𝑢𝑠) ∩ 𝑌) = (𝑢 ∩ (𝑠𝑌))
3634, 35syl6eqr 2674 . . . . . . . . . . . . 13 (𝑡 = (𝑠𝑌) → (𝑢𝑡) = ((𝑢𝑠) ∩ 𝑌))
3736neeq1d 2853 . . . . . . . . . . . 12 (𝑡 = (𝑠𝑌) → ((𝑢𝑡) ≠ ∅ ↔ ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
3837rspcv 3305 . . . . . . . . . . 11 ((𝑠𝑌) ∈ 𝐹 → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
3933, 38syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) ∧ 𝑠𝐹) → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
4039ralrimdva 2969 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (∀𝑡𝐹 (𝑢𝑡) ≠ ∅ → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
4128, 40impbid2 216 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅ ↔ ∀𝑡𝐹 (𝑢𝑡) ≠ ∅))
4241imbi2d 330 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → ((𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅) ↔ (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
4342ralbidva 2985 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑢𝐽 (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
44 vex 3203 . . . . . . . . 9 𝑢 ∈ V
4544inex1 4799 . . . . . . . 8 (𝑢𝑌) ∈ V
4645a1i 11 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ V)
47 elrest 16088 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
48473adant2 1080 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
4948adantr 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑦 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑦 = (𝑢𝑌)))
50 eleq2 2690 . . . . . . . . 9 (𝑦 = (𝑢𝑌) → (𝑥𝑦𝑥 ∈ (𝑢𝑌)))
51 elin 3796 . . . . . . . . . . 11 (𝑥 ∈ (𝑢𝑌) ↔ (𝑥𝑢𝑥𝑌))
5251rbaib 947 . . . . . . . . . 10 (𝑥𝑌 → (𝑥 ∈ (𝑢𝑌) ↔ 𝑥𝑢))
5352adantl 482 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝑢𝑌) ↔ 𝑥𝑢))
5450, 53sylan9bbr 737 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → (𝑥𝑦𝑥𝑢))
55 vex 3203 . . . . . . . . . . . 12 𝑠 ∈ V
5655inex1 4799 . . . . . . . . . . 11 (𝑠𝑌) ∈ V
5756a1i 11 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ V)
58 elrest 16088 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
59583adant1 1079 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
6059adantr 481 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑧 ∈ (𝐹t 𝑌) ↔ ∃𝑠𝐹 𝑧 = (𝑠𝑌)))
61 ineq2 3808 . . . . . . . . . . . 12 (𝑧 = (𝑠𝑌) → (𝑦𝑧) = (𝑦 ∩ (𝑠𝑌)))
6261adantl 482 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧 = (𝑠𝑌)) → (𝑦𝑧) = (𝑦 ∩ (𝑠𝑌)))
6362neeq1d 2853 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑧 = (𝑠𝑌)) → ((𝑦𝑧) ≠ ∅ ↔ (𝑦 ∩ (𝑠𝑌)) ≠ ∅))
6457, 60, 63ralxfr2d 4882 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅ ↔ ∀𝑠𝐹 (𝑦 ∩ (𝑠𝑌)) ≠ ∅))
65 ineq1 3807 . . . . . . . . . . . 12 (𝑦 = (𝑢𝑌) → (𝑦 ∩ (𝑠𝑌)) = ((𝑢𝑌) ∩ (𝑠𝑌)))
66 inindir 3831 . . . . . . . . . . . 12 ((𝑢𝑠) ∩ 𝑌) = ((𝑢𝑌) ∩ (𝑠𝑌))
6765, 66syl6eqr 2674 . . . . . . . . . . 11 (𝑦 = (𝑢𝑌) → (𝑦 ∩ (𝑠𝑌)) = ((𝑢𝑠) ∩ 𝑌))
6867neeq1d 2853 . . . . . . . . . 10 (𝑦 = (𝑢𝑌) → ((𝑦 ∩ (𝑠𝑌)) ≠ ∅ ↔ ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
6968ralbidv 2986 . . . . . . . . 9 (𝑦 = (𝑢𝑌) → (∀𝑠𝐹 (𝑦 ∩ (𝑠𝑌)) ≠ ∅ ↔ ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
7064, 69sylan9bb 736 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → (∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅ ↔ ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅))
7154, 70imbi12d 334 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) ∧ 𝑦 = (𝑢𝑌)) → ((𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅)))
7246, 49, 71ralxfr2d 4882 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑠𝐹 ((𝑢𝑠) ∩ 𝑌) ≠ ∅)))
731adantr 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐽 ∈ (TopOn‘𝑋))
7411adantr 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝐹 ∈ (Fil‘𝑋))
753sselda 3603 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → 𝑥𝑋)
76 fclsopn 21818 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅))))
7776baibd 948 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
7873, 74, 75, 77syl21anc 1325 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∀𝑡𝐹 (𝑢𝑡) ≠ ∅)))
7943, 72, 783bitr4d 300 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑥𝑌) → (∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅) ↔ 𝑥 ∈ (𝐽 fClus 𝐹)))
8079pm5.32da 673 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑥𝑌 ∧ ∀𝑦 ∈ (𝐽t 𝑌)(𝑥𝑦 → ∀𝑧 ∈ (𝐹t 𝑌)(𝑦𝑧) ≠ ∅)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹))))
8116, 80bitrd 268 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹))))
82 elin 3796 . . . 4 (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥 ∈ (𝐽 fClus 𝐹) ∧ 𝑥𝑌))
83 ancom 466 . . . 4 ((𝑥 ∈ (𝐽 fClus 𝐹) ∧ 𝑥𝑌) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹)))
8482, 83bitri 264 . . 3 (𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌) ↔ (𝑥𝑌𝑥 ∈ (𝐽 fClus 𝐹)))
8581, 84syl6bbr 278 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑥 ∈ ((𝐽t 𝑌) fClus (𝐹t 𝑌)) ↔ 𝑥 ∈ ((𝐽 fClus 𝐹) ∩ 𝑌)))
8685eqrdv 2620 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐽t 𝑌) fClus (𝐹t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  t crest 16081  fBascfbas 19734  TopOnctopon 20715  Filcfil 21649   fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-fil 21650  df-fcls 21745
This theorem is referenced by:  relcmpcmet  23115
  Copyright terms: Public domain W3C validator