MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcmpcmet Structured version   Visualization version   GIF version

Theorem relcmpcmet 23115
Description: If 𝐷 is a metric space such that all the balls of some fixed size are relatively compact, then 𝐷 is complete. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
relcmpcmet.1 𝐽 = (MetOpen‘𝐷)
relcmpcmet.2 (𝜑𝐷 ∈ (Met‘𝑋))
relcmpcmet.3 (𝜑𝑅 ∈ ℝ+)
relcmpcmet.4 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
Assertion
Ref Expression
relcmpcmet (𝜑𝐷 ∈ (CMet‘𝑋))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐽   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋

Proof of Theorem relcmpcmet
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 relcmpcmet.2 . 2 (𝜑𝐷 ∈ (Met‘𝑋))
2 metxmet 22139 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
43adantr 481 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
5 simpr 477 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (CauFil‘𝐷))
6 relcmpcmet.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
76adantr 481 . . . . 5 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑅 ∈ ℝ+)
8 cfil3i 23067 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
94, 5, 7, 8syl3anc 1326 . . . 4 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
103ad2antrr 762 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐷 ∈ (∞Met‘𝑋))
11 relcmpcmet.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
1211mopntopon 22244 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1310, 12syl 17 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ (TopOn‘𝑋))
14 cfilfil 23065 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋))
153, 14sylan 488 . . . . . . . 8 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → 𝑓 ∈ (Fil‘𝑋))
1615adantr 481 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
17 simprr 796 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)
18 topontop 20718 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1913, 18syl 17 . . . . . . . . . 10 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝐽 ∈ Top)
20 simprl 794 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑥𝑋)
216rpxrd 11873 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ*)
2221ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑅 ∈ ℝ*)
23 blssm 22223 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
2410, 20, 22, 23syl3anc 1326 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
25 toponuni 20719 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2613, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑋 = 𝐽)
2724, 26sseqtrd 3641 . . . . . . . . . 10 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽)
28 eqid 2622 . . . . . . . . . . 11 𝐽 = 𝐽
2928clsss3 20863 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝐽)
3019, 27, 29syl2anc 693 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝐽)
3130, 26sseqtr4d 3642 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋)
3228sscls 20860 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝐽) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
3319, 27, 32syl2anc 693 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
34 filss 21657 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)𝑅) ∈ 𝑓 ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓)
3516, 17, 31, 33, 34syl13anc 1328 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓)
36 fclsrest 21828 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
3713, 16, 35, 36syl3anc 1326 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) = ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
38 inss1 3833 . . . . . . 7 ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fClus 𝑓)
39 eqid 2622 . . . . . . . . 9 dom dom 𝐷 = dom dom 𝐷
4011, 39cfilfcls 23072 . . . . . . . 8 (𝑓 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
4140ad2antlr 763 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fClus 𝑓) = (𝐽 fLim 𝑓))
4238, 41syl5sseq 3653 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽 fClus 𝑓) ∩ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ⊆ (𝐽 fLim 𝑓))
4337, 42eqsstrd 3639 . . . . 5 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓))
44 relcmpcmet.4 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
4544ad2ant2r 783 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp)
46 filfbas 21652 . . . . . . . . . 10 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
4716, 46syl 17 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → 𝑓 ∈ (fBas‘𝑋))
48 fbncp 21643 . . . . . . . . 9 ((𝑓 ∈ (fBas‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ∈ 𝑓) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)
4947, 35, 48syl2anc 693 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓)
50 trfil3 21692 . . . . . . . . 9 ((𝑓 ∈ (Fil‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → ((𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓))
5116, 31, 50syl2anc 693 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ↔ ¬ (𝑋 ∖ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ 𝑓))
5249, 51mpbird 247 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
53 resttopon 20965 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) ⊆ 𝑋) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5413, 31, 53syl2anc 693 . . . . . . . . 9 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
55 toponuni 20719 . . . . . . . . 9 ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (TopOn‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5654, 55syl 17 . . . . . . . 8 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))
5756fveq2d 6195 . . . . . . 7 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (Fil‘((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))))
5852, 57eleqtrd 2703 . . . . . 6 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))))
59 eqid 2622 . . . . . . 7 (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) = (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))
6059fclscmpi 21833 . . . . . 6 (((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ Comp ∧ (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) ∈ (Fil‘ (𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))))) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅)
6145, 58, 60syl2anc 693 . . . . 5 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅)
62 ssn0 3976 . . . . 5 ((((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ⊆ (𝐽 fLim 𝑓) ∧ ((𝐽t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅))) fClus (𝑓t ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑅)))) ≠ ∅) → (𝐽 fLim 𝑓) ≠ ∅)
6343, 61, 62syl2anc 693 . . . 4 (((𝜑𝑓 ∈ (CauFil‘𝐷)) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)𝑅) ∈ 𝑓)) → (𝐽 fLim 𝑓) ≠ ∅)
649, 63rexlimddv 3035 . . 3 ((𝜑𝑓 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑓) ≠ ∅)
6564ralrimiva 2966 . 2 (𝜑 → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)
6611iscmet 23082 . 2 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
671, 65, 66sylanbrc 698 1 (𝜑𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  cin 3573  wss 3574  c0 3915   cuni 4436  dom cdm 5114  cfv 5888  (class class class)co 6650  *cxr 10073  +crp 11832  t crest 16081  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  fBascfbas 19734  MetOpencmopn 19736  Topctop 20698  TopOnctopon 20715  clsccl 20822  Compccmp 21189  Filcfil 21649   fLim cflim 21738   fClus cfcls 21740  CauFilccfil 23050  CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cmp 21190  df-fil 21650  df-flim 21743  df-fcls 21745  df-cfil 23053  df-cmet 23055
This theorem is referenced by:  cmpcmet  23116  cncmet  23119
  Copyright terms: Public domain W3C validator