| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgtr | Structured version Visualization version Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| fgtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 21652 |
. . . . . . . 8
| |
| 2 | fbncp 21643 |
. . . . . . . 8
| |
| 3 | 1, 2 | sylan 488 |
. . . . . . 7
|
| 4 | filelss 21656 |
. . . . . . . 8
| |
| 5 | trfil3 21692 |
. . . . . . . 8
| |
| 6 | 4, 5 | syldan 487 |
. . . . . . 7
|
| 7 | 3, 6 | mpbird 247 |
. . . . . 6
|
| 8 | filfbas 21652 |
. . . . . 6
| |
| 9 | 7, 8 | syl 17 |
. . . . 5
|
| 10 | restsspw 16092 |
. . . . . 6
| |
| 11 | sspwb 4917 |
. . . . . . 7
| |
| 12 | 4, 11 | sylib 208 |
. . . . . 6
|
| 13 | 10, 12 | syl5ss 3614 |
. . . . 5
|
| 14 | filtop 21659 |
. . . . . 6
| |
| 15 | 14 | adantr 481 |
. . . . 5
|
| 16 | fbasweak 21669 |
. . . . 5
| |
| 17 | 9, 13, 15, 16 | syl3anc 1326 |
. . . 4
|
| 18 | 1 | adantr 481 |
. . . 4
|
| 19 | trfilss 21693 |
. . . 4
| |
| 20 | fgss 21677 |
. . . 4
| |
| 21 | 17, 18, 19, 20 | syl3anc 1326 |
. . 3
|
| 22 | fgfil 21679 |
. . . 4
| |
| 23 | 22 | adantr 481 |
. . 3
|
| 24 | 21, 23 | sseqtrd 3641 |
. 2
|
| 25 | filelss 21656 |
. . . . . . 7
| |
| 26 | 25 | ex 450 |
. . . . . 6
|
| 27 | 26 | adantr 481 |
. . . . 5
|
| 28 | elrestr 16089 |
. . . . . . . 8
| |
| 29 | 28 | 3expa 1265 |
. . . . . . 7
|
| 30 | inss1 3833 |
. . . . . . 7
| |
| 31 | sseq1 3626 |
. . . . . . . 8
| |
| 32 | 31 | rspcev 3309 |
. . . . . . 7
|
| 33 | 29, 30, 32 | sylancl 694 |
. . . . . 6
|
| 34 | 33 | ex 450 |
. . . . 5
|
| 35 | 27, 34 | jcad 555 |
. . . 4
|
| 36 | elfg 21675 |
. . . . 5
| |
| 37 | 17, 36 | syl 17 |
. . . 4
|
| 38 | 35, 37 | sylibrd 249 |
. . 3
|
| 39 | 38 | ssrdv 3609 |
. 2
|
| 40 | 24, 39 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-rest 16083 df-fbas 19743 df-fg 19744 df-fil 21650 |
| This theorem is referenced by: cfilres 23094 |
| Copyright terms: Public domain | W3C validator |