MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgtr Structured version   Visualization version   Unicode version

Theorem fgtr 21694
Description: If  A is a member of the filter, then truncating  F to  A and regenerating the behavior outside  A using 
filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgtr  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  =  F )

Proof of Theorem fgtr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 21652 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
2 fbncp 21643 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  X )  /\  A  e.  F )  ->  -.  ( X  \  A )  e.  F )
31, 2sylan 488 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  -.  ( X  \  A )  e.  F )
4 filelss 21656 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  A  C_  X )
5 trfil3 21692 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  C_  X )  ->  (
( Ft  A )  e.  ( Fil `  A )  <->  -.  ( X  \  A
)  e.  F ) )
64, 5syldan 487 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
( Ft  A )  e.  ( Fil `  A )  <->  -.  ( X  \  A
)  e.  F ) )
73, 6mpbird 247 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  ( Fil `  A ) )
8 filfbas 21652 . . . . . 6  |-  ( ( Ft  A )  e.  ( Fil `  A )  ->  ( Ft  A )  e.  ( fBas `  A
) )
97, 8syl 17 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  (
fBas `  A )
)
10 restsspw 16092 . . . . . 6  |-  ( Ft  A )  C_  ~P A
11 sspwb 4917 . . . . . . 7  |-  ( A 
C_  X  <->  ~P A  C_ 
~P X )
124, 11sylib 208 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ~P A  C_  ~P X )
1310, 12syl5ss 3614 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  C_  ~P X )
14 filtop 21659 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
1514adantr 481 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  X  e.  F )
16 fbasweak 21669 . . . . 5  |-  ( ( ( Ft  A )  e.  (
fBas `  A )  /\  ( Ft  A )  C_  ~P X  /\  X  e.  F
)  ->  ( Ft  A
)  e.  ( fBas `  X ) )
179, 13, 15, 16syl3anc 1326 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  (
fBas `  X )
)
181adantr 481 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  F  e.  ( fBas `  X
) )
19 trfilss 21693 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  C_  F
)
20 fgss 21677 . . . 4  |-  ( ( ( Ft  A )  e.  (
fBas `  X )  /\  F  e.  ( fBas `  X )  /\  ( Ft  A )  C_  F
)  ->  ( X filGen ( Ft  A ) )  C_  ( X filGen F ) )
2117, 18, 19, 20syl3anc 1326 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  C_  ( X filGen F ) )
22 fgfil 21679 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  ( X filGen F )  =  F )
2322adantr 481 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen F )  =  F )
2421, 23sseqtrd 3641 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  C_  F )
25 filelss 21656 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  x  e.  F )  ->  x  C_  X )
2625ex 450 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  x  C_  X ) )
2726adantr 481 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  x  C_  X ) )
28 elrestr 16089 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( Ft  A ) )
29283expa 1265 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  F
)  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( Ft  A ) )
30 inss1 3833 . . . . . . 7  |-  ( x  i^i  A )  C_  x
31 sseq1 3626 . . . . . . . 8  |-  ( y  =  ( x  i^i 
A )  ->  (
y  C_  x  <->  ( x  i^i  A )  C_  x
) )
3231rspcev 3309 . . . . . . 7  |-  ( ( ( x  i^i  A
)  e.  ( Ft  A )  /\  ( x  i^i  A )  C_  x )  ->  E. y  e.  ( Ft  A ) y  C_  x )
3329, 30, 32sylancl 694 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  F
)  /\  x  e.  F )  ->  E. y  e.  ( Ft  A ) y  C_  x )
3433ex 450 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  E. y  e.  ( Ft  A ) y  C_  x ) )
3527, 34jcad 555 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  -> 
( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
36 elfg 21675 . . . . 5  |-  ( ( Ft  A )  e.  (
fBas `  X )  ->  ( x  e.  ( X filGen ( Ft  A ) )  <->  ( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
3717, 36syl 17 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  ( X
filGen ( Ft  A ) )  <->  ( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
3835, 37sylibrd 249 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  x  e.  ( X filGen ( Ft  A ) ) ) )
3938ssrdv 3609 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  F  C_  ( X filGen ( Ft  A ) ) )
4024, 39eqssd 3620 1  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  =  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   fBascfbas 19734   filGencfg 19735   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-fbas 19743  df-fg 19744  df-fil 21650
This theorem is referenced by:  cfilres  23094
  Copyright terms: Public domain W3C validator