MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipreima Structured version   Visualization version   GIF version

Theorem fipreima 8272
Description: Given a finite subset 𝐴 of the range of a function, there exists a finite subset of the domain whose image is 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
fipreima ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐹,𝑐

Proof of Theorem fipreima
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . . 3 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3592 . . . . . 6 (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥𝐴 𝑥 ∈ ran 𝐹)
3 fvelrnb 6243 . . . . . . 7 (𝐹 Fn 𝐵 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
43ralbidv 2986 . . . . . 6 (𝐹 Fn 𝐵 → (∀𝑥𝐴 𝑥 ∈ ran 𝐹 ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥))
52, 4syl5bb 272 . . . . 5 (𝐹 Fn 𝐵 → (𝐴 ⊆ ran 𝐹 ↔ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥))
65biimpa 501 . . . 4 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥)
763adant3 1081 . . 3 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥)
8 fveq2 6191 . . . . 5 (𝑦 = (𝑓𝑥) → (𝐹𝑦) = (𝐹‘(𝑓𝑥)))
98eqeq1d 2624 . . . 4 (𝑦 = (𝑓𝑥) → ((𝐹𝑦) = 𝑥 ↔ (𝐹‘(𝑓𝑥)) = 𝑥))
109ac6sfi 8204 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 (𝐹𝑦) = 𝑥) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
111, 7, 10syl2anc 693 . 2 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
12 fimass 6081 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
13 vex 3203 . . . . . . . 8 𝑓 ∈ V
1413imaex 7104 . . . . . . 7 (𝑓𝐴) ∈ V
1514elpw 4164 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1612, 15sylibr 224 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1716ad2antrl 764 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ 𝒫 𝐵)
18 ffun 6048 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1918ad2antrl 764 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → Fun 𝑓)
20 simpl3 1066 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝐴 ∈ Fin)
21 imafi 8259 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2219, 20, 21syl2anc 693 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ Fin)
2317, 22elind 3798 . . 3 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
24 fvco3 6275 . . . . . . . . . . 11 ((𝑓:𝐴𝐵𝑥𝐴) → ((𝐹𝑓)‘𝑥) = (𝐹‘(𝑓𝑥)))
25 fvresi 6439 . . . . . . . . . . . 12 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
2625adantl 482 . . . . . . . . . . 11 ((𝑓:𝐴𝐵𝑥𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
2724, 26eqeq12d 2637 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → (((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘(𝑓𝑥)) = 𝑥))
2827ralbidva 2985 . . . . . . . . 9 (𝑓:𝐴𝐵 → (∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥))
2928biimprd 238 . . . . . . . 8 (𝑓:𝐴𝐵 → (∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥 → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
3029adantl 482 . . . . . . 7 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥 → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
3130impr 649 . . . . . 6 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥))
32 simpl1 1064 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝐹 Fn 𝐵)
33 ffn 6045 . . . . . . . . 9 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
3433ad2antrl 764 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → 𝑓 Fn 𝐴)
35 frn 6053 . . . . . . . . 9 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
3635ad2antrl 764 . . . . . . . 8 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ran 𝑓𝐵)
37 fnco 5999 . . . . . . . 8 ((𝐹 Fn 𝐵𝑓 Fn 𝐴 ∧ ran 𝑓𝐵) → (𝐹𝑓) Fn 𝐴)
3832, 34, 36, 37syl3anc 1326 . . . . . . 7 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹𝑓) Fn 𝐴)
39 fnresi 6008 . . . . . . 7 ( I ↾ 𝐴) Fn 𝐴
40 eqfnfv 6311 . . . . . . 7 (((𝐹𝑓) Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → ((𝐹𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
4138, 39, 40sylancl 694 . . . . . 6 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ((𝐹𝑓) = ( I ↾ 𝐴) ↔ ∀𝑥𝐴 ((𝐹𝑓)‘𝑥) = (( I ↾ 𝐴)‘𝑥)))
4231, 41mpbird 247 . . . . 5 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹𝑓) = ( I ↾ 𝐴))
4342imaeq1d 5465 . . . 4 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ((𝐹𝑓) “ 𝐴) = (( I ↾ 𝐴) “ 𝐴))
44 imaco 5640 . . . 4 ((𝐹𝑓) “ 𝐴) = (𝐹 “ (𝑓𝐴))
45 ssid 3624 . . . . 5 𝐴𝐴
46 resiima 5480 . . . . 5 (𝐴𝐴 → (( I ↾ 𝐴) “ 𝐴) = 𝐴)
4745, 46ax-mp 5 . . . 4 (( I ↾ 𝐴) “ 𝐴) = 𝐴
4843, 44, 473eqtr3g 2679 . . 3 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → (𝐹 “ (𝑓𝐴)) = 𝐴)
49 imaeq2 5462 . . . . 5 (𝑐 = (𝑓𝐴) → (𝐹𝑐) = (𝐹 “ (𝑓𝐴)))
5049eqeq1d 2624 . . . 4 (𝑐 = (𝑓𝐴) → ((𝐹𝑐) = 𝐴 ↔ (𝐹 “ (𝑓𝐴)) = 𝐴))
5150rspcev 3309 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝐹 “ (𝑓𝐴)) = 𝐴) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
5223, 48, 51syl2anc 693 . 2 (((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹‘(𝑓𝑥)) = 𝑥)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
5311, 52exlimddv 1863 1 ((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158   I cid 5023  ran crn 5115  cres 5116  cima 5117  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  fodomfi2  8883  cmpfi  21211  elrfirn  37258  lmhmfgsplit  37656  hbtlem6  37699
  Copyright terms: Public domain W3C validator