| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fipreima | Structured version Visualization version Unicode version | ||
| Description: Given a finite subset
|
| Ref | Expression |
|---|---|
| fipreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1063 |
. . 3
| |
| 2 | dfss3 3592 |
. . . . . 6
| |
| 3 | fvelrnb 6243 |
. . . . . . 7
| |
| 4 | 3 | ralbidv 2986 |
. . . . . 6
|
| 5 | 2, 4 | syl5bb 272 |
. . . . 5
|
| 6 | 5 | biimpa 501 |
. . . 4
|
| 7 | 6 | 3adant3 1081 |
. . 3
|
| 8 | fveq2 6191 |
. . . . 5
| |
| 9 | 8 | eqeq1d 2624 |
. . . 4
|
| 10 | 9 | ac6sfi 8204 |
. . 3
|
| 11 | 1, 7, 10 | syl2anc 693 |
. 2
|
| 12 | fimass 6081 |
. . . . . 6
| |
| 13 | vex 3203 |
. . . . . . . 8
| |
| 14 | 13 | imaex 7104 |
. . . . . . 7
|
| 15 | 14 | elpw 4164 |
. . . . . 6
|
| 16 | 12, 15 | sylibr 224 |
. . . . 5
|
| 17 | 16 | ad2antrl 764 |
. . . 4
|
| 18 | ffun 6048 |
. . . . . 6
| |
| 19 | 18 | ad2antrl 764 |
. . . . 5
|
| 20 | simpl3 1066 |
. . . . 5
| |
| 21 | imafi 8259 |
. . . . 5
| |
| 22 | 19, 20, 21 | syl2anc 693 |
. . . 4
|
| 23 | 17, 22 | elind 3798 |
. . 3
|
| 24 | fvco3 6275 |
. . . . . . . . . . 11
| |
| 25 | fvresi 6439 |
. . . . . . . . . . . 12
| |
| 26 | 25 | adantl 482 |
. . . . . . . . . . 11
|
| 27 | 24, 26 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 28 | 27 | ralbidva 2985 |
. . . . . . . . 9
|
| 29 | 28 | biimprd 238 |
. . . . . . . 8
|
| 30 | 29 | adantl 482 |
. . . . . . 7
|
| 31 | 30 | impr 649 |
. . . . . 6
|
| 32 | simpl1 1064 |
. . . . . . . 8
| |
| 33 | ffn 6045 |
. . . . . . . . 9
| |
| 34 | 33 | ad2antrl 764 |
. . . . . . . 8
|
| 35 | frn 6053 |
. . . . . . . . 9
| |
| 36 | 35 | ad2antrl 764 |
. . . . . . . 8
|
| 37 | fnco 5999 |
. . . . . . . 8
| |
| 38 | 32, 34, 36, 37 | syl3anc 1326 |
. . . . . . 7
|
| 39 | fnresi 6008 |
. . . . . . 7
| |
| 40 | eqfnfv 6311 |
. . . . . . 7
| |
| 41 | 38, 39, 40 | sylancl 694 |
. . . . . 6
|
| 42 | 31, 41 | mpbird 247 |
. . . . 5
|
| 43 | 42 | imaeq1d 5465 |
. . . 4
|
| 44 | imaco 5640 |
. . . 4
| |
| 45 | ssid 3624 |
. . . . 5
| |
| 46 | resiima 5480 |
. . . . 5
| |
| 47 | 45, 46 | ax-mp 5 |
. . . 4
|
| 48 | 43, 44, 47 | 3eqtr3g 2679 |
. . 3
|
| 49 | imaeq2 5462 |
. . . . 5
| |
| 50 | 49 | eqeq1d 2624 |
. . . 4
|
| 51 | 50 | rspcev 3309 |
. . 3
|
| 52 | 23, 48, 51 | syl2anc 693 |
. 2
|
| 53 | 11, 52 | exlimddv 1863 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-fin 7959 |
| This theorem is referenced by: fodomfi2 8883 cmpfi 21211 elrfirn 37258 lmhmfgsplit 37656 hbtlem6 37699 |
| Copyright terms: Public domain | W3C validator |