| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 6653 |
. 2
⊢ (𝑅𝑂𝑆) = (𝑂‘〈𝑅, 𝑆〉) |
| 2 | | flfcnp2.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | | flfcnp2.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 4 | | txtopon 21394 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 5 | 2, 3, 4 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 6 | | flfcnp2.l |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑍)) |
| 7 | | flfcnp2.a |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑋) |
| 8 | | flfcnp2.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ 𝑌) |
| 9 | | opelxpi 5148 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
| 10 | 7, 8, 9 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
| 11 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉) |
| 12 | 10, 11 | fmptd 6385 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉):𝑍⟶(𝑋 × 𝑌)) |
| 13 | | flfcnp2.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ ((𝐽 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐴))) |
| 14 | | flfcnp2.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ((𝐾 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐵))) |
| 15 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑍 ↦ 𝐴) = (𝑥 ∈ 𝑍 ↦ 𝐴) |
| 16 | 7, 15 | fmptd 6385 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴):𝑍⟶𝑋) |
| 17 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑍 ↦ 𝐵) = (𝑥 ∈ 𝑍 ↦ 𝐵) |
| 18 | 8, 17 | fmptd 6385 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐵):𝑍⟶𝑌) |
| 19 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑦〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉 |
| 20 | | nffvmpt1 6199 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦) |
| 21 | | nffvmpt1 6199 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦) |
| 22 | 20, 21 | nfop 4418 |
. . . . . . . 8
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦)〉 |
| 23 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦)) |
| 24 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦)) |
| 25 | 23, 24 | opeq12d 4410 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦)〉) |
| 26 | 19, 22, 25 | cbvmpt 4749 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉) = (𝑦 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦)〉) |
| 27 | 2, 3, 6, 16, 18, 26 | txflf 21810 |
. . . . . 6
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉)) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐴)) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐵))))) |
| 28 | 13, 14, 27 | mpbir2and 957 |
. . . . 5
⊢ (𝜑 → 〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉))) |
| 29 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝑍) |
| 30 | 15 | fvmpt2 6291 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = 𝐴) |
| 31 | 29, 7, 30 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = 𝐴) |
| 32 | 17 | fvmpt2 6291 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌) → ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥) = 𝐵) |
| 33 | 29, 8, 32 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥) = 𝐵) |
| 34 | 31, 33 | opeq12d 4410 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉 = 〈𝐴, 𝐵〉) |
| 35 | 34 | mpteq2dva 4744 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)) |
| 36 | 35 | fveq2d 6195 |
. . . . 5
⊢ (𝜑 → (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉)) = (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉))) |
| 37 | 28, 36 | eleqtrd 2703 |
. . . 4
⊢ (𝜑 → 〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉))) |
| 38 | | flfcnp2.o |
. . . 4
⊢ (𝜑 → 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉)) |
| 39 | | flfcnp 21808 |
. . . 4
⊢ ((((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉):𝑍⟶(𝑋 × 𝑌)) ∧ (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)) ∧ 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉))) → (𝑂‘〈𝑅, 𝑆〉) ∈ ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)))) |
| 40 | 5, 6, 12, 37, 38, 39 | syl32anc 1334 |
. . 3
⊢ (𝜑 → (𝑂‘〈𝑅, 𝑆〉) ∈ ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)))) |
| 41 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)) |
| 42 | | cnptop2 21047 |
. . . . . . . . 9
⊢ (𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉) → 𝑁 ∈ Top) |
| 43 | 38, 42 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ Top) |
| 44 | | eqid 2622 |
. . . . . . . . 9
⊢ ∪ 𝑁 =
∪ 𝑁 |
| 45 | 44 | toptopon 20722 |
. . . . . . . 8
⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 46 | 43, 45 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 47 | | cnpf2 21054 |
. . . . . . 7
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁)
∧ 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉)) → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
| 48 | 5, 46, 38, 47 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
| 49 | 48 | feqmptd 6249 |
. . . . 5
⊢ (𝜑 → 𝑂 = (𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑂‘𝑦))) |
| 50 | | fveq2 6191 |
. . . . . 6
⊢ (𝑦 = 〈𝐴, 𝐵〉 → (𝑂‘𝑦) = (𝑂‘〈𝐴, 𝐵〉)) |
| 51 | | df-ov 6653 |
. . . . . 6
⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) |
| 52 | 50, 51 | syl6eqr 2674 |
. . . . 5
⊢ (𝑦 = 〈𝐴, 𝐵〉 → (𝑂‘𝑦) = (𝐴𝑂𝐵)) |
| 53 | 10, 41, 49, 52 | fmptco 6396 |
. . . 4
⊢ (𝜑 → (𝑂 ∘ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)) = (𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵))) |
| 54 | 53 | fveq2d 6195 |
. . 3
⊢ (𝜑 → ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉))) = ((𝑁 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵)))) |
| 55 | 40, 54 | eleqtrd 2703 |
. 2
⊢ (𝜑 → (𝑂‘〈𝑅, 𝑆〉) ∈ ((𝑁 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵)))) |
| 56 | 1, 55 | syl5eqel 2705 |
1
⊢ (𝜑 → (𝑅𝑂𝑆) ∈ ((𝑁 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵)))) |