MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcnp2 Structured version   Visualization version   Unicode version

Theorem flfcnp2 21811
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
flfcnp2.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
flfcnp2.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
flfcnp2.l  |-  ( ph  ->  L  e.  ( Fil `  Z ) )
flfcnp2.a  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  X )
flfcnp2.b  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  Y )
flfcnp2.r  |-  ( ph  ->  R  e.  ( ( J  fLimf  L ) `  ( x  e.  Z  |->  A ) ) )
flfcnp2.s  |-  ( ph  ->  S  e.  ( ( K  fLimf  L ) `  ( x  e.  Z  |->  B ) ) )
flfcnp2.o  |-  ( ph  ->  O  e.  ( ( ( J  tX  K
)  CnP  N ) `  <. R ,  S >. ) )
Assertion
Ref Expression
flfcnp2  |-  ( ph  ->  ( R O S )  e.  ( ( N  fLimf  L ) `  ( x  e.  Z  |->  ( A O B ) ) ) )
Distinct variable groups:    x, O    ph, x    x, Z    x, X    x, Y
Allowed substitution hints:    A( x)    B( x)    R( x)    S( x)    J( x)    K( x)    L( x)    N( x)

Proof of Theorem flfcnp2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( R O S )  =  ( O `  <. R ,  S >. )
2 flfcnp2.j . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 flfcnp2.k . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
4 txtopon 21394 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
52, 3, 4syl2anc 693 . . . 4  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
6 flfcnp2.l . . . 4  |-  ( ph  ->  L  e.  ( Fil `  Z ) )
7 flfcnp2.a . . . . . 6  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  X )
8 flfcnp2.b . . . . . 6  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  Y )
9 opelxpi 5148 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y )  -> 
<. A ,  B >.  e.  ( X  X.  Y
) )
107, 8, 9syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  Z )  ->  <. A ,  B >.  e.  ( X  X.  Y ) )
11 eqid 2622 . . . . 5  |-  ( x  e.  Z  |->  <. A ,  B >. )  =  ( x  e.  Z  |->  <. A ,  B >. )
1210, 11fmptd 6385 . . . 4  |-  ( ph  ->  ( x  e.  Z  |-> 
<. A ,  B >. ) : Z --> ( X  X.  Y ) )
13 flfcnp2.r . . . . . 6  |-  ( ph  ->  R  e.  ( ( J  fLimf  L ) `  ( x  e.  Z  |->  A ) ) )
14 flfcnp2.s . . . . . 6  |-  ( ph  ->  S  e.  ( ( K  fLimf  L ) `  ( x  e.  Z  |->  B ) ) )
15 eqid 2622 . . . . . . . 8  |-  ( x  e.  Z  |->  A )  =  ( x  e.  Z  |->  A )
167, 15fmptd 6385 . . . . . . 7  |-  ( ph  ->  ( x  e.  Z  |->  A ) : Z --> X )
17 eqid 2622 . . . . . . . 8  |-  ( x  e.  Z  |->  B )  =  ( x  e.  Z  |->  B )
188, 17fmptd 6385 . . . . . . 7  |-  ( ph  ->  ( x  e.  Z  |->  B ) : Z --> Y )
19 nfcv 2764 . . . . . . . 8  |-  F/_ y <. ( ( x  e.  Z  |->  A ) `  x ) ,  ( ( x  e.  Z  |->  B ) `  x
) >.
20 nffvmpt1 6199 . . . . . . . . 9  |-  F/_ x
( ( x  e.  Z  |->  A ) `  y )
21 nffvmpt1 6199 . . . . . . . . 9  |-  F/_ x
( ( x  e.  Z  |->  B ) `  y )
2220, 21nfop 4418 . . . . . . . 8  |-  F/_ x <. ( ( x  e.  Z  |->  A ) `  y ) ,  ( ( x  e.  Z  |->  B ) `  y
) >.
23 fveq2 6191 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  Z  |->  A ) `  x
)  =  ( ( x  e.  Z  |->  A ) `  y ) )
24 fveq2 6191 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  Z  |->  B ) `  x
)  =  ( ( x  e.  Z  |->  B ) `  y ) )
2523, 24opeq12d 4410 . . . . . . . 8  |-  ( x  =  y  ->  <. (
( x  e.  Z  |->  A ) `  x
) ,  ( ( x  e.  Z  |->  B ) `  x )
>.  =  <. ( ( x  e.  Z  |->  A ) `  y ) ,  ( ( x  e.  Z  |->  B ) `
 y ) >.
)
2619, 22, 25cbvmpt 4749 . . . . . . 7  |-  ( x  e.  Z  |->  <. (
( x  e.  Z  |->  A ) `  x
) ,  ( ( x  e.  Z  |->  B ) `  x )
>. )  =  (
y  e.  Z  |->  <.
( ( x  e.  Z  |->  A ) `  y ) ,  ( ( x  e.  Z  |->  B ) `  y
) >. )
272, 3, 6, 16, 18, 26txflf 21810 . . . . . 6  |-  ( ph  ->  ( <. R ,  S >.  e.  ( ( ( J  tX  K ) 
fLimf  L ) `  (
x  e.  Z  |->  <.
( ( x  e.  Z  |->  A ) `  x ) ,  ( ( x  e.  Z  |->  B ) `  x
) >. ) )  <->  ( R  e.  ( ( J  fLimf  L ) `  ( x  e.  Z  |->  A ) )  /\  S  e.  ( ( K  fLimf  L ) `  ( x  e.  Z  |->  B ) ) ) ) )
2813, 14, 27mpbir2and 957 . . . . 5  |-  ( ph  -> 
<. R ,  S >.  e.  ( ( ( J 
tX  K )  fLimf  L ) `  ( x  e.  Z  |->  <. (
( x  e.  Z  |->  A ) `  x
) ,  ( ( x  e.  Z  |->  B ) `  x )
>. ) ) )
29 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  Z )  ->  x  e.  Z )
3015fvmpt2 6291 . . . . . . . . 9  |-  ( ( x  e.  Z  /\  A  e.  X )  ->  ( ( x  e.  Z  |->  A ) `  x )  =  A )
3129, 7, 30syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  Z )  ->  (
( x  e.  Z  |->  A ) `  x
)  =  A )
3217fvmpt2 6291 . . . . . . . . 9  |-  ( ( x  e.  Z  /\  B  e.  Y )  ->  ( ( x  e.  Z  |->  B ) `  x )  =  B )
3329, 8, 32syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  Z )  ->  (
( x  e.  Z  |->  B ) `  x
)  =  B )
3431, 33opeq12d 4410 . . . . . . 7  |-  ( (
ph  /\  x  e.  Z )  ->  <. (
( x  e.  Z  |->  A ) `  x
) ,  ( ( x  e.  Z  |->  B ) `  x )
>.  =  <. A ,  B >. )
3534mpteq2dva 4744 . . . . . 6  |-  ( ph  ->  ( x  e.  Z  |-> 
<. ( ( x  e.  Z  |->  A ) `  x ) ,  ( ( x  e.  Z  |->  B ) `  x
) >. )  =  ( x  e.  Z  |->  <. A ,  B >. ) )
3635fveq2d 6195 . . . . 5  |-  ( ph  ->  ( ( ( J 
tX  K )  fLimf  L ) `  ( x  e.  Z  |->  <. (
( x  e.  Z  |->  A ) `  x
) ,  ( ( x  e.  Z  |->  B ) `  x )
>. ) )  =  ( ( ( J  tX  K )  fLimf  L ) `
 ( x  e.  Z  |->  <. A ,  B >. ) ) )
3728, 36eleqtrd 2703 . . . 4  |-  ( ph  -> 
<. R ,  S >.  e.  ( ( ( J 
tX  K )  fLimf  L ) `  ( x  e.  Z  |->  <. A ,  B >. ) ) )
38 flfcnp2.o . . . 4  |-  ( ph  ->  O  e.  ( ( ( J  tX  K
)  CnP  N ) `  <. R ,  S >. ) )
39 flfcnp 21808 . . . 4  |-  ( ( ( ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  ( Fil `  Z
)  /\  ( x  e.  Z  |->  <. A ,  B >. ) : Z --> ( X  X.  Y
) )  /\  ( <. R ,  S >.  e.  ( ( ( J 
tX  K )  fLimf  L ) `  ( x  e.  Z  |->  <. A ,  B >. ) )  /\  O  e.  ( (
( J  tX  K
)  CnP  N ) `  <. R ,  S >. ) ) )  -> 
( O `  <. R ,  S >. )  e.  ( ( N  fLimf  L ) `  ( O  o.  ( x  e.  Z  |->  <. A ,  B >. ) ) ) )
405, 6, 12, 37, 38, 39syl32anc 1334 . . 3  |-  ( ph  ->  ( O `  <. R ,  S >. )  e.  ( ( N  fLimf  L ) `  ( O  o.  ( x  e.  Z  |->  <. A ,  B >. ) ) ) )
41 eqidd 2623 . . . . 5  |-  ( ph  ->  ( x  e.  Z  |-> 
<. A ,  B >. )  =  ( x  e.  Z  |->  <. A ,  B >. ) )
42 cnptop2 21047 . . . . . . . . 9  |-  ( O  e.  ( ( ( J  tX  K )  CnP  N ) `  <. R ,  S >. )  ->  N  e.  Top )
4338, 42syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  Top )
44 eqid 2622 . . . . . . . . 9  |-  U. N  =  U. N
4544toptopon 20722 . . . . . . . 8  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
4643, 45sylib 208 . . . . . . 7  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
47 cnpf2 21054 . . . . . . 7  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  N  e.  (TopOn `  U. N )  /\  O  e.  ( ( ( J  tX  K )  CnP  N
) `  <. R ,  S >. ) )  ->  O : ( X  X.  Y ) --> U. N
)
485, 46, 38, 47syl3anc 1326 . . . . . 6  |-  ( ph  ->  O : ( X  X.  Y ) --> U. N )
4948feqmptd 6249 . . . . 5  |-  ( ph  ->  O  =  ( y  e.  ( X  X.  Y )  |->  ( O `
 y ) ) )
50 fveq2 6191 . . . . . 6  |-  ( y  =  <. A ,  B >.  ->  ( O `  y )  =  ( O `  <. A ,  B >. ) )
51 df-ov 6653 . . . . . 6  |-  ( A O B )  =  ( O `  <. A ,  B >. )
5250, 51syl6eqr 2674 . . . . 5  |-  ( y  =  <. A ,  B >.  ->  ( O `  y )  =  ( A O B ) )
5310, 41, 49, 52fmptco 6396 . . . 4  |-  ( ph  ->  ( O  o.  (
x  e.  Z  |->  <. A ,  B >. ) )  =  ( x  e.  Z  |->  ( A O B ) ) )
5453fveq2d 6195 . . 3  |-  ( ph  ->  ( ( N  fLimf  L ) `  ( O  o.  ( x  e.  Z  |->  <. A ,  B >. ) ) )  =  ( ( N  fLimf  L ) `  ( x  e.  Z  |->  ( A O B ) ) ) )
5540, 54eleqtrd 2703 . 2  |-  ( ph  ->  ( O `  <. R ,  S >. )  e.  ( ( N  fLimf  L ) `  ( x  e.  Z  |->  ( A O B ) ) ) )
561, 55syl5eqel 2705 1  |-  ( ph  ->  ( R O S )  e.  ( ( N  fLimf  L ) `  ( x  e.  Z  |->  ( A O B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   U.cuni 4436    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715    CnP ccnp 21029    tX ctx 21363   Filcfil 21649    fLimf cflf 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824  df-nei 20902  df-cnp 21032  df-tx 21365  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744
This theorem is referenced by:  tsmsadd  21950
  Copyright terms: Public domain W3C validator