| Step | Hyp | Ref
| Expression |
| 1 | | fnse.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 2 | 1 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 3 | | fnse.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Se 𝐵) |
| 4 | | seex 5077 |
. . . . . . . 8
⊢ ((𝑅 Se 𝐵 ∧ (𝐹‘𝑧) ∈ 𝐵) → {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V) |
| 5 | 3, 4 | sylan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹‘𝑧) ∈ 𝐵) → {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V) |
| 6 | 2, 5 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V) |
| 7 | | snex 4908 |
. . . . . 6
⊢ {(𝐹‘𝑧)} ∈ V |
| 8 | | unexg 6959 |
. . . . . 6
⊢ (({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∈ V ∧ {(𝐹‘𝑧)} ∈ V) → ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) |
| 9 | 6, 7, 8 | sylancl 694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) |
| 10 | | imaeq2 5462 |
. . . . . . . . 9
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → (◡𝐹 “ 𝑤) = (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 11 | 10 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → ((◡𝐹 “ 𝑤) ∈ V ↔ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V)) |
| 12 | 11 | imbi2d 330 |
. . . . . . 7
⊢ (𝑤 = ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) → ((𝜑 → (◡𝐹 “ 𝑤) ∈ V) ↔ (𝜑 → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V))) |
| 13 | | fnse.4 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ 𝑤) ∈ V) |
| 14 | 12, 13 | vtoclg 3266 |
. . . . . 6
⊢ (({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V → (𝜑 → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V)) |
| 15 | 14 | impcom 446 |
. . . . 5
⊢ ((𝜑 ∧ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ∈ V) → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V) |
| 16 | 9, 15 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ∈ V) |
| 17 | | inss2 3834 |
. . . . . 6
⊢ (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝑇 “ {𝑧}) |
| 18 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 19 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑤 ∈ V |
| 20 | 19 | eliniseg 5494 |
. . . . . . . . 9
⊢ (𝑧 ∈ V → (𝑤 ∈ (◡𝑇 “ {𝑧}) ↔ 𝑤𝑇𝑧)) |
| 21 | 18, 20 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑤 ∈ (◡𝑇 “ {𝑧}) ↔ 𝑤𝑇𝑧) |
| 22 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 23 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 24 | 22, 23 | breqan12d 4669 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
| 25 | 22, 23 | eqeqan12d 2638 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑤) = (𝐹‘𝑧))) |
| 26 | | breq12 4658 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑥𝑆𝑦 ↔ 𝑤𝑆𝑧)) |
| 27 | 25, 26 | anbi12d 747 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦) ↔ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧))) |
| 28 | 24, 27 | orbi12d 746 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)) ↔ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)))) |
| 29 | | fnse.1 |
. . . . . . . . . 10
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑆𝑦)))} |
| 30 | 28, 29 | brab2a 5194 |
. . . . . . . . 9
⊢ (𝑤𝑇𝑧 ↔ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)))) |
| 31 | 1 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐵) |
| 32 | 31 | adantrr 753 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝐹‘𝑤) ∈ 𝐵) |
| 33 | | breq1 4656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = (𝐹‘𝑤) → (𝑢𝑅(𝐹‘𝑧) ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
| 34 | 33 | elrab3 3364 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑤) ∈ 𝐵 → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
| 35 | 32, 34 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑧))) |
| 36 | 35 | biimprd 238 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑤)𝑅(𝐹‘𝑧) → (𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)})) |
| 37 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) = (𝐹‘𝑧)) |
| 38 | | fvex 6201 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹‘𝑤) ∈ V |
| 39 | 38 | elsn 4192 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑤) ∈ {(𝐹‘𝑧)} ↔ (𝐹‘𝑤) = (𝐹‘𝑧)) |
| 40 | 37, 39 | sylibr 224 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) ∈ {(𝐹‘𝑧)}) |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧) → (𝐹‘𝑤) ∈ {(𝐹‘𝑧)})) |
| 42 | 36, 41 | orim12d 883 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∨ (𝐹‘𝑤) ∈ {(𝐹‘𝑧)}))) |
| 43 | | elun 3753 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}) ↔ ((𝐹‘𝑤) ∈ {𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∨ (𝐹‘𝑤) ∈ {(𝐹‘𝑧)})) |
| 44 | 42, 43 | syl6ibr 242 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 45 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑤 ∈ 𝐴) |
| 46 | 44, 45 | jctild 566 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 47 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 48 | 1, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 49 | 48 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐹 Fn 𝐴) |
| 50 | | elpreima 6337 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 → (𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) ∈ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 52 | 46, 51 | sylibrd 249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧)) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 53 | 52 | expimpd 629 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ ((𝐹‘𝑤)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤𝑆𝑧))) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 54 | 30, 53 | syl5bi 232 |
. . . . . . . 8
⊢ (𝜑 → (𝑤𝑇𝑧 → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 55 | 21, 54 | syl5bi 232 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ (◡𝑇 “ {𝑧}) → 𝑤 ∈ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)})))) |
| 56 | 55 | ssrdv 3609 |
. . . . . 6
⊢ (𝜑 → (◡𝑇 “ {𝑧}) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 57 | 17, 56 | syl5ss 3614 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 58 | 57 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐴 ∩ (◡𝑇 “ {𝑧})) ⊆ (◡𝐹 “ ({𝑢 ∈ 𝐵 ∣ 𝑢𝑅(𝐹‘𝑧)} ∪ {(𝐹‘𝑧)}))) |
| 59 | 16, 58 | ssexd 4805 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
| 60 | 59 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
| 61 | | dfse2 5499 |
. 2
⊢ (𝑇 Se 𝐴 ↔ ∀𝑧 ∈ 𝐴 (𝐴 ∩ (◡𝑇 “ {𝑧})) ∈ V) |
| 62 | 60, 61 | sylibr 224 |
1
⊢ (𝜑 → 𝑇 Se 𝐴) |