Proof of Theorem fpwwe2lem10
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . 4
⊢
OrdIso(𝑅, 𝑋) = OrdIso(𝑅, 𝑋) |
| 2 | 1 | oicl 8434 |
. . 3
⊢ Ord dom
OrdIso(𝑅, 𝑋) |
| 3 | | eqid 2622 |
. . . 4
⊢
OrdIso(𝑆, 𝑌) = OrdIso(𝑆, 𝑌) |
| 4 | 3 | oicl 8434 |
. . 3
⊢ Ord dom
OrdIso(𝑆, 𝑌) |
| 5 | | ordtri2or2 5823 |
. . 3
⊢ ((Ord dom
OrdIso(𝑅, 𝑋) ∧ Ord dom OrdIso(𝑆, 𝑌)) → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋))) |
| 6 | 2, 4, 5 | mp2an 708 |
. 2
⊢ (dom
OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) |
| 7 | | fpwwe2.1 |
. . . . 5
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| 8 | | fpwwe2.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ V) |
| 9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝐴 ∈ V) |
| 10 | | fpwwe2.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 11 | 10 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 12 | | fpwwe2lem10.4 |
. . . . . 6
⊢ (𝜑 → 𝑋𝑊𝑅) |
| 13 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑋𝑊𝑅) |
| 14 | | fpwwe2lem10.6 |
. . . . . 6
⊢ (𝜑 → 𝑌𝑊𝑆) |
| 15 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → 𝑌𝑊𝑆) |
| 16 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) |
| 17 | 7, 9, 11, 13, 15, 1, 3, 16 | fpwwe2lem9 9460 |
. . . 4
⊢ ((𝜑 ∧ dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌)) → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) |
| 18 | 17 | ex 450 |
. . 3
⊢ (𝜑 → (dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))))) |
| 19 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝐴 ∈ V) |
| 20 | 10 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 21 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑌𝑊𝑆) |
| 22 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → 𝑋𝑊𝑅) |
| 23 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) |
| 24 | 7, 19, 20, 21, 22, 3, 1, 23 | fpwwe2lem9 9460 |
. . . 4
⊢ ((𝜑 ∧ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))) |
| 25 | 24 | ex 450 |
. . 3
⊢ (𝜑 → (dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋) → (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |
| 26 | 18, 25 | orim12d 883 |
. 2
⊢ (𝜑 → ((dom OrdIso(𝑅, 𝑋) ⊆ dom OrdIso(𝑆, 𝑌) ∨ dom OrdIso(𝑆, 𝑌) ⊆ dom OrdIso(𝑅, 𝑋)) → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))) |
| 27 | 6, 26 | mpi 20 |
1
⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) |