MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem10 Structured version   Visualization version   Unicode version

Theorem fpwwe2lem10 9461
Description: Lemma for fpwwe2 9465. Given two well-orders  <. X ,  R >. and  <. Y ,  S >. of parts of  A, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
fpwwe2.3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
fpwwe2lem10.4  |-  ( ph  ->  X W R )
fpwwe2lem10.6  |-  ( ph  ->  Y W S )
Assertion
Ref Expression
fpwwe2lem10  |-  ( ph  ->  ( ( X  C_  Y  /\  R  =  ( S  i^i  ( Y  X.  X ) ) )  \/  ( Y 
C_  X  /\  S  =  ( R  i^i  ( X  X.  Y
) ) ) ) )
Distinct variable groups:    y, u, r, x, F    X, r, u, x, y    ph, r, u, x, y    A, r, x    R, r, u, x, y    Y, r, u, x, y    S, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    A( y, u)

Proof of Theorem fpwwe2lem10
StepHypRef Expression
1 eqid 2622 . . . 4  |- OrdIso ( R ,  X )  = OrdIso
( R ,  X
)
21oicl 8434 . . 3  |-  Ord  dom OrdIso ( R ,  X )
3 eqid 2622 . . . 4  |- OrdIso ( S ,  Y )  = OrdIso
( S ,  Y
)
43oicl 8434 . . 3  |-  Ord  dom OrdIso ( S ,  Y )
5 ordtri2or2 5823 . . 3  |-  ( ( Ord  dom OrdIso ( R ,  X )  /\  Ord  dom OrdIso ( S ,  Y ) )  ->  ( dom OrdIso ( R ,  X ) 
C_  dom OrdIso ( S ,  Y )  \/  dom OrdIso ( S ,  Y ) 
C_  dom OrdIso ( R ,  X ) ) )
62, 4, 5mp2an 708 . 2  |-  ( dom OrdIso ( R ,  X ) 
C_  dom OrdIso ( S ,  Y )  \/  dom OrdIso ( S ,  Y ) 
C_  dom OrdIso ( R ,  X ) )
7 fpwwe2.1 . . . . 5  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
8 fpwwe2.2 . . . . . 6  |-  ( ph  ->  A  e.  _V )
98adantr 481 . . . . 5  |-  ( (
ph  /\  dom OrdIso ( R ,  X )  C_  dom OrdIso ( S ,  Y
) )  ->  A  e.  _V )
10 fpwwe2.3 . . . . . 6  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
1110adantlr 751 . . . . 5  |-  ( ( ( ph  /\  dom OrdIso ( R ,  X ) 
C_  dom OrdIso ( S ,  Y ) )  /\  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) )  -> 
( x F r )  e.  A )
12 fpwwe2lem10.4 . . . . . 6  |-  ( ph  ->  X W R )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  dom OrdIso ( R ,  X )  C_  dom OrdIso ( S ,  Y
) )  ->  X W R )
14 fpwwe2lem10.6 . . . . . 6  |-  ( ph  ->  Y W S )
1514adantr 481 . . . . 5  |-  ( (
ph  /\  dom OrdIso ( R ,  X )  C_  dom OrdIso ( S ,  Y
) )  ->  Y W S )
16 simpr 477 . . . . 5  |-  ( (
ph  /\  dom OrdIso ( R ,  X )  C_  dom OrdIso ( S ,  Y
) )  ->  dom OrdIso ( R ,  X ) 
C_  dom OrdIso ( S ,  Y ) )
177, 9, 11, 13, 15, 1, 3, 16fpwwe2lem9 9460 . . . 4  |-  ( (
ph  /\  dom OrdIso ( R ,  X )  C_  dom OrdIso ( S ,  Y
) )  ->  ( X  C_  Y  /\  R  =  ( S  i^i  ( Y  X.  X
) ) ) )
1817ex 450 . . 3  |-  ( ph  ->  ( dom OrdIso ( R ,  X )  C_  dom OrdIso ( S ,  Y )  ->  ( X  C_  Y  /\  R  =  ( S  i^i  ( Y  X.  X ) ) ) ) )
198adantr 481 . . . . 5  |-  ( (
ph  /\  dom OrdIso ( S ,  Y )  C_  dom OrdIso ( R ,  X
) )  ->  A  e.  _V )
2010adantlr 751 . . . . 5  |-  ( ( ( ph  /\  dom OrdIso ( S ,  Y ) 
C_  dom OrdIso ( R ,  X ) )  /\  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) )  -> 
( x F r )  e.  A )
2114adantr 481 . . . . 5  |-  ( (
ph  /\  dom OrdIso ( S ,  Y )  C_  dom OrdIso ( R ,  X
) )  ->  Y W S )
2212adantr 481 . . . . 5  |-  ( (
ph  /\  dom OrdIso ( S ,  Y )  C_  dom OrdIso ( R ,  X
) )  ->  X W R )
23 simpr 477 . . . . 5  |-  ( (
ph  /\  dom OrdIso ( S ,  Y )  C_  dom OrdIso ( R ,  X
) )  ->  dom OrdIso ( S ,  Y ) 
C_  dom OrdIso ( R ,  X ) )
247, 19, 20, 21, 22, 3, 1, 23fpwwe2lem9 9460 . . . 4  |-  ( (
ph  /\  dom OrdIso ( S ,  Y )  C_  dom OrdIso ( R ,  X
) )  ->  ( Y  C_  X  /\  S  =  ( R  i^i  ( X  X.  Y
) ) ) )
2524ex 450 . . 3  |-  ( ph  ->  ( dom OrdIso ( S ,  Y )  C_  dom OrdIso ( R ,  X )  ->  ( Y  C_  X  /\  S  =  ( R  i^i  ( X  X.  Y ) ) ) ) )
2618, 25orim12d 883 . 2  |-  ( ph  ->  ( ( dom OrdIso ( R ,  X )  C_  dom OrdIso ( S ,  Y
)  \/  dom OrdIso ( S ,  Y )  C_  dom OrdIso ( R ,  X
) )  ->  (
( X  C_  Y  /\  R  =  ( S  i^i  ( Y  X.  X ) ) )  \/  ( Y  C_  X  /\  S  =  ( R  i^i  ( X  X.  Y ) ) ) ) ) )
276, 26mpi 20 1  |-  ( ph  ->  ( ( X  C_  Y  /\  R  =  ( S  i^i  ( Y  X.  X ) ) )  \/  ( Y 
C_  X  /\  S  =  ( R  i^i  ( X  X.  Y
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574   {csn 4177   class class class wbr 4653   {copab 4712    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117   Ord word 5722  (class class class)co 6650  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-wrecs 7407  df-recs 7468  df-oi 8415
This theorem is referenced by:  fpwwe2lem11  9462  fpwwe2lem12  9463  fpwwe2  9465
  Copyright terms: Public domain W3C validator