Proof of Theorem fpwwe2lem9
| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe2lem9.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋𝑊𝑅) |
| 2 | | fpwwe2.1 |
. . . . . . . . . . 11
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| 3 | 2 | relopabi 5245 |
. . . . . . . . . 10
⊢ Rel 𝑊 |
| 4 | 3 | brrelexi 5158 |
. . . . . . . . 9
⊢ (𝑋𝑊𝑅 → 𝑋 ∈ V) |
| 5 | 1, 4 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ V) |
| 6 | | fpwwe2.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ V) |
| 7 | 2, 6 | fpwwe2lem2 9454 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 8 | 1, 7 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 9 | 8 | simprd 479 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 10 | 9 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 We 𝑋) |
| 11 | | fpwwe2lem9.m |
. . . . . . . . 9
⊢ 𝑀 = OrdIso(𝑅, 𝑋) |
| 12 | 11 | oiiso 8442 |
. . . . . . . 8
⊢ ((𝑋 ∈ V ∧ 𝑅 We 𝑋) → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
| 13 | 5, 10, 12 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → 𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋)) |
| 14 | | isof1o 6573 |
. . . . . . 7
⊢ (𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) → 𝑀:dom 𝑀–1-1-onto→𝑋) |
| 15 | 13, 14 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀:dom 𝑀–1-1-onto→𝑋) |
| 16 | | f1ofo 6144 |
. . . . . 6
⊢ (𝑀:dom 𝑀–1-1-onto→𝑋 → 𝑀:dom 𝑀–onto→𝑋) |
| 17 | | forn 6118 |
. . . . . 6
⊢ (𝑀:dom 𝑀–onto→𝑋 → ran 𝑀 = 𝑋) |
| 18 | 15, 16, 17 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ran 𝑀 = 𝑋) |
| 19 | | fpwwe2.3 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 20 | | fpwwe2lem9.y |
. . . . . . 7
⊢ (𝜑 → 𝑌𝑊𝑆) |
| 21 | | fpwwe2lem9.n |
. . . . . . 7
⊢ 𝑁 = OrdIso(𝑆, 𝑌) |
| 22 | | fpwwe2lem9.s |
. . . . . . 7
⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) |
| 23 | 2, 6, 19, 1, 20, 11, 21, 22 | fpwwe2lem8 9459 |
. . . . . 6
⊢ (𝜑 → 𝑀 = (𝑁 ↾ dom 𝑀)) |
| 24 | 23 | rneqd 5353 |
. . . . 5
⊢ (𝜑 → ran 𝑀 = ran (𝑁 ↾ dom 𝑀)) |
| 25 | 18, 24 | eqtr3d 2658 |
. . . 4
⊢ (𝜑 → 𝑋 = ran (𝑁 ↾ dom 𝑀)) |
| 26 | | df-ima 5127 |
. . . 4
⊢ (𝑁 “ dom 𝑀) = ran (𝑁 ↾ dom 𝑀) |
| 27 | 25, 26 | syl6eqr 2674 |
. . 3
⊢ (𝜑 → 𝑋 = (𝑁 “ dom 𝑀)) |
| 28 | | imassrn 5477 |
. . . 4
⊢ (𝑁 “ dom 𝑀) ⊆ ran 𝑁 |
| 29 | 3 | brrelexi 5158 |
. . . . . . . 8
⊢ (𝑌𝑊𝑆 → 𝑌 ∈ V) |
| 30 | 20, 29 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ V) |
| 31 | 2, 6 | fpwwe2lem2 9454 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌𝑊𝑆 ↔ ((𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 32 | 20, 31 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ (𝑌 × 𝑌)) ∧ (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 33 | 32 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑆 “ {𝑦}) / 𝑢](𝑢𝐹(𝑆 ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 34 | 33 | simpld 475 |
. . . . . . 7
⊢ (𝜑 → 𝑆 We 𝑌) |
| 35 | 21 | oiiso 8442 |
. . . . . . 7
⊢ ((𝑌 ∈ V ∧ 𝑆 We 𝑌) → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
| 36 | 30, 34, 35 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → 𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌)) |
| 37 | | isof1o 6573 |
. . . . . 6
⊢ (𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) → 𝑁:dom 𝑁–1-1-onto→𝑌) |
| 38 | 36, 37 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑁:dom 𝑁–1-1-onto→𝑌) |
| 39 | | f1ofo 6144 |
. . . . 5
⊢ (𝑁:dom 𝑁–1-1-onto→𝑌 → 𝑁:dom 𝑁–onto→𝑌) |
| 40 | | forn 6118 |
. . . . 5
⊢ (𝑁:dom 𝑁–onto→𝑌 → ran 𝑁 = 𝑌) |
| 41 | 38, 39, 40 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran 𝑁 = 𝑌) |
| 42 | 28, 41 | syl5sseq 3653 |
. . 3
⊢ (𝜑 → (𝑁 “ dom 𝑀) ⊆ 𝑌) |
| 43 | 27, 42 | eqsstrd 3639 |
. 2
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
| 44 | 8 | simpld 475 |
. . . . . 6
⊢ (𝜑 → (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋))) |
| 45 | 44 | simprd 479 |
. . . . 5
⊢ (𝜑 → 𝑅 ⊆ (𝑋 × 𝑋)) |
| 46 | | relxp 5227 |
. . . . 5
⊢ Rel
(𝑋 × 𝑋) |
| 47 | | relss 5206 |
. . . . 5
⊢ (𝑅 ⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel 𝑅)) |
| 48 | 45, 46, 47 | mpisyl 21 |
. . . 4
⊢ (𝜑 → Rel 𝑅) |
| 49 | | inss2 3834 |
. . . . 5
⊢ (𝑆 ∩ (𝑌 × 𝑋)) ⊆ (𝑌 × 𝑋) |
| 50 | | relxp 5227 |
. . . . 5
⊢ Rel
(𝑌 × 𝑋) |
| 51 | | relss 5206 |
. . . . 5
⊢ ((𝑆 ∩ (𝑌 × 𝑋)) ⊆ (𝑌 × 𝑋) → (Rel (𝑌 × 𝑋) → Rel (𝑆 ∩ (𝑌 × 𝑋)))) |
| 52 | 49, 50, 51 | mp2 9 |
. . . 4
⊢ Rel
(𝑆 ∩ (𝑌 × 𝑋)) |
| 53 | 48, 52 | jctir 561 |
. . 3
⊢ (𝜑 → (Rel 𝑅 ∧ Rel (𝑆 ∩ (𝑌 × 𝑋)))) |
| 54 | 45 | ssbrd 4696 |
. . . . . . 7
⊢ (𝜑 → (𝑥𝑅𝑦 → 𝑥(𝑋 × 𝑋)𝑦)) |
| 55 | | brxp 5147 |
. . . . . . 7
⊢ (𝑥(𝑋 × 𝑋)𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
| 56 | 54, 55 | syl6ib 241 |
. . . . . 6
⊢ (𝜑 → (𝑥𝑅𝑦 → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
| 57 | | brinxp2 5180 |
. . . . . . . 8
⊢ (𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦 ↔ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥𝑆𝑦)) |
| 58 | | df-3an 1039 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥𝑆𝑦) ↔ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) |
| 59 | 57, 58 | bitri 264 |
. . . . . . 7
⊢ (𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦 ↔ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) |
| 60 | | simprll 802 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑥 ∈ 𝑌) |
| 61 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑥𝑆𝑦) |
| 62 | | isocnv 6580 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) → ◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁)) |
| 63 | 36, 62 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁)) |
| 64 | 63 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁)) |
| 65 | 43 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑋 ⊆ 𝑌) |
| 66 | | simprlr 803 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑦 ∈ 𝑋) |
| 67 | 65, 66 | sseldd 3604 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑦 ∈ 𝑌) |
| 68 | | isorel 6576 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑆𝑦 ↔ (◡𝑁‘𝑥) E (◡𝑁‘𝑦))) |
| 69 | 64, 60, 67, 68 | syl12anc 1324 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (𝑥𝑆𝑦 ↔ (◡𝑁‘𝑥) E (◡𝑁‘𝑦))) |
| 70 | 61, 69 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑁‘𝑥) E (◡𝑁‘𝑦)) |
| 71 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢ (◡𝑁‘𝑦) ∈ V |
| 72 | 71 | epelc 5031 |
. . . . . . . . . . . . 13
⊢ ((◡𝑁‘𝑥) E (◡𝑁‘𝑦) ↔ (◡𝑁‘𝑥) ∈ (◡𝑁‘𝑦)) |
| 73 | 70, 72 | sylib 208 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑁‘𝑥) ∈ (◡𝑁‘𝑦)) |
| 74 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑀 = (𝑁 ↾ dom 𝑀)) |
| 75 | 74 | cnveqd 5298 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑀 = ◡(𝑁 ↾ dom 𝑀)) |
| 76 | | isof1o 6573 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑁 Isom 𝑆, E (𝑌, dom 𝑁) → ◡𝑁:𝑌–1-1-onto→dom
𝑁) |
| 77 | | f1ofn 6138 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑁:𝑌–1-1-onto→dom
𝑁 → ◡𝑁 Fn 𝑌) |
| 78 | 64, 76, 77 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑁 Fn 𝑌) |
| 79 | | fnfun 5988 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝑁 Fn 𝑌 → Fun ◡𝑁) |
| 80 | | funcnvres 5967 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
◡𝑁 → ◡(𝑁 ↾ dom 𝑀) = (◡𝑁 ↾ (𝑁 “ dom 𝑀))) |
| 81 | 78, 79, 80 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡(𝑁 ↾ dom 𝑀) = (◡𝑁 ↾ (𝑁 “ dom 𝑀))) |
| 82 | 75, 81 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑀 = (◡𝑁 ↾ (𝑁 “ dom 𝑀))) |
| 83 | 82 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑀‘𝑦) = ((◡𝑁 ↾ (𝑁 “ dom 𝑀))‘𝑦)) |
| 84 | 27 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑋 = (𝑁 “ dom 𝑀)) |
| 85 | 66, 84 | eleqtrd 2703 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑦 ∈ (𝑁 “ dom 𝑀)) |
| 86 | | fvres 6207 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝑁 “ dom 𝑀) → ((◡𝑁 ↾ (𝑁 “ dom 𝑀))‘𝑦) = (◡𝑁‘𝑦)) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ((◡𝑁 ↾ (𝑁 “ dom 𝑀))‘𝑦) = (◡𝑁‘𝑦)) |
| 88 | 83, 87 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑀‘𝑦) = (◡𝑁‘𝑦)) |
| 89 | | isocnv 6580 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 Isom E , 𝑅 (dom 𝑀, 𝑋) → ◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀)) |
| 90 | 13, 89 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀)) |
| 91 | | isof1o 6573 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀) → ◡𝑀:𝑋–1-1-onto→dom
𝑀) |
| 92 | | f1of 6137 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝑀:𝑋–1-1-onto→dom
𝑀 → ◡𝑀:𝑋⟶dom 𝑀) |
| 93 | 90, 91, 92 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ◡𝑀:𝑋⟶dom 𝑀) |
| 94 | 93 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → ◡𝑀:𝑋⟶dom 𝑀) |
| 95 | 94, 66 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑀‘𝑦) ∈ dom 𝑀) |
| 96 | 88, 95 | eqeltrrd 2702 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑁‘𝑦) ∈ dom 𝑀) |
| 97 | 11 | oicl 8434 |
. . . . . . . . . . . . 13
⊢ Ord dom
𝑀 |
| 98 | | ordtr1 5767 |
. . . . . . . . . . . . 13
⊢ (Ord dom
𝑀 → (((◡𝑁‘𝑥) ∈ (◡𝑁‘𝑦) ∧ (◡𝑁‘𝑦) ∈ dom 𝑀) → (◡𝑁‘𝑥) ∈ dom 𝑀)) |
| 99 | 97, 98 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (((◡𝑁‘𝑥) ∈ (◡𝑁‘𝑦) ∧ (◡𝑁‘𝑦) ∈ dom 𝑀) → (◡𝑁‘𝑥) ∈ dom 𝑀) |
| 100 | 73, 96, 99 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (◡𝑁‘𝑥) ∈ dom 𝑀) |
| 101 | | elpreima 6337 |
. . . . . . . . . . . 12
⊢ (◡𝑁 Fn 𝑌 → (𝑥 ∈ (◡◡𝑁 “ dom 𝑀) ↔ (𝑥 ∈ 𝑌 ∧ (◡𝑁‘𝑥) ∈ dom 𝑀))) |
| 102 | 78, 101 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (𝑥 ∈ (◡◡𝑁 “ dom 𝑀) ↔ (𝑥 ∈ 𝑌 ∧ (◡𝑁‘𝑥) ∈ dom 𝑀))) |
| 103 | 60, 100, 102 | mpbir2and 957 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑥 ∈ (◡◡𝑁 “ dom 𝑀)) |
| 104 | | imacnvcnv 5599 |
. . . . . . . . . . 11
⊢ (◡◡𝑁 “ dom 𝑀) = (𝑁 “ dom 𝑀) |
| 105 | 84, 104 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑋 = (◡◡𝑁 “ dom 𝑀)) |
| 106 | 103, 105 | eleqtrrd 2704 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → 𝑥 ∈ 𝑋) |
| 107 | 106, 66 | jca 554 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦)) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
| 108 | 107 | ex 450 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
| 109 | 59, 108 | syl5bi 232 |
. . . . . 6
⊢ (𝜑 → (𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦 → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
| 110 | 23 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑀 = (𝑁 ↾ dom 𝑀)) |
| 111 | 110 | cnveqd 5298 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ◡𝑀 = ◡(𝑁 ↾ dom 𝑀)) |
| 112 | 111 | fveq1d 6193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (◡𝑀‘𝑥) = (◡(𝑁 ↾ dom 𝑀)‘𝑥)) |
| 113 | 111 | fveq1d 6193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (◡𝑀‘𝑦) = (◡(𝑁 ↾ dom 𝑀)‘𝑦)) |
| 114 | 112, 113 | breq12d 4666 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((◡𝑀‘𝑥) E (◡𝑀‘𝑦) ↔ (◡(𝑁 ↾ dom 𝑀)‘𝑥) E (◡(𝑁 ↾ dom 𝑀)‘𝑦))) |
| 115 | | isorel 6576 |
. . . . . . . . . 10
⊢ ((◡𝑀 Isom 𝑅, E (𝑋, dom 𝑀) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ (◡𝑀‘𝑥) E (◡𝑀‘𝑦))) |
| 116 | 90, 115 | sylan 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ (◡𝑀‘𝑥) E (◡𝑀‘𝑦))) |
| 117 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 “ dom 𝑀) = (𝑁 “ dom 𝑀)) |
| 118 | | isores3 6585 |
. . . . . . . . . . . . 13
⊢ ((𝑁 Isom E , 𝑆 (dom 𝑁, 𝑌) ∧ dom 𝑀 ⊆ dom 𝑁 ∧ (𝑁 “ dom 𝑀) = (𝑁 “ dom 𝑀)) → (𝑁 ↾ dom 𝑀) Isom E , 𝑆 (dom 𝑀, (𝑁 “ dom 𝑀))) |
| 119 | 36, 22, 117, 118 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 ↾ dom 𝑀) Isom E , 𝑆 (dom 𝑀, (𝑁 “ dom 𝑀))) |
| 120 | | isocnv 6580 |
. . . . . . . . . . . 12
⊢ ((𝑁 ↾ dom 𝑀) Isom E , 𝑆 (dom 𝑀, (𝑁 “ dom 𝑀)) → ◡(𝑁 ↾ dom 𝑀) Isom 𝑆, E ((𝑁 “ dom 𝑀), dom 𝑀)) |
| 121 | 119, 120 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡(𝑁 ↾ dom 𝑀) Isom 𝑆, E ((𝑁 “ dom 𝑀), dom 𝑀)) |
| 122 | 121 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ◡(𝑁 ↾ dom 𝑀) Isom 𝑆, E ((𝑁 “ dom 𝑀), dom 𝑀)) |
| 123 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
| 124 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑋 = (𝑁 “ dom 𝑀)) |
| 125 | 123, 124 | eleqtrd 2703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ (𝑁 “ dom 𝑀)) |
| 126 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 127 | 126, 124 | eleqtrd 2703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ (𝑁 “ dom 𝑀)) |
| 128 | | isorel 6576 |
. . . . . . . . . 10
⊢ ((◡(𝑁 ↾ dom 𝑀) Isom 𝑆, E ((𝑁 “ dom 𝑀), dom 𝑀) ∧ (𝑥 ∈ (𝑁 “ dom 𝑀) ∧ 𝑦 ∈ (𝑁 “ dom 𝑀))) → (𝑥𝑆𝑦 ↔ (◡(𝑁 ↾ dom 𝑀)‘𝑥) E (◡(𝑁 ↾ dom 𝑀)‘𝑦))) |
| 129 | 122, 125,
127, 128 | syl12anc 1324 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑆𝑦 ↔ (◡(𝑁 ↾ dom 𝑀)‘𝑥) E (◡(𝑁 ↾ dom 𝑀)‘𝑦))) |
| 130 | 114, 116,
129 | 3bitr4d 300 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) |
| 131 | 43 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑌) |
| 132 | 131 | adantrr 753 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑌) |
| 133 | 132, 126 | jca 554 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋)) |
| 134 | 133 | biantrurd 529 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑆𝑦 ↔ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑥𝑆𝑦))) |
| 135 | 134, 59 | syl6bbr 278 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑆𝑦 ↔ 𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦)) |
| 136 | 130, 135 | bitrd 268 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑅𝑦 ↔ 𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦)) |
| 137 | 136 | ex 450 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ↔ 𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦))) |
| 138 | 56, 109, 137 | pm5.21ndd 369 |
. . . . 5
⊢ (𝜑 → (𝑥𝑅𝑦 ↔ 𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦)) |
| 139 | | df-br 4654 |
. . . . 5
⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 140 | | df-br 4654 |
. . . . 5
⊢ (𝑥(𝑆 ∩ (𝑌 × 𝑋))𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝑆 ∩ (𝑌 × 𝑋))) |
| 141 | 138, 139,
140 | 3bitr3g 302 |
. . . 4
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ (𝑆 ∩ (𝑌 × 𝑋)))) |
| 142 | 141 | eqrelrdv2 5219 |
. . 3
⊢ (((Rel
𝑅 ∧ Rel (𝑆 ∩ (𝑌 × 𝑋))) ∧ 𝜑) → 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) |
| 143 | 53, 142 | mpancom 703 |
. 2
⊢ (𝜑 → 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) |
| 144 | 43, 143 | jca 554 |
1
⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) |