| Step | Hyp | Ref
| Expression |
| 1 | | orc 400 |
. . 3
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺))) |
| 3 | | olc 399 |
. . 3
⊢ (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) |
| 4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺))) |
| 5 | | funcres2c.a |
. . . . 5
⊢ 𝐴 = (Base‘𝐶) |
| 6 | | eqid 2622 |
. . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 7 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 8 | | eqid 2622 |
. . . . . . 7
⊢
(Homf ‘𝐷) = (Homf ‘𝐷) |
| 9 | | funcres2c.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 10 | | inss2 3834 |
. . . . . . . 8
⊢ (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷) |
| 11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)) |
| 12 | 7, 8, 9, 11 | fullsubc 16510 |
. . . . . 6
⊢ (𝜑 → ((Homf
‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷)) |
| 13 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf
‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷)) |
| 14 | 8, 7 | homffn 16353 |
. . . . . . 7
⊢
(Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
| 15 | | xpss12 5225 |
. . . . . . . 8
⊢ (((𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷) ∧ (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)) → ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))) |
| 16 | 10, 10, 15 | mp2an 708 |
. . . . . . 7
⊢ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷)) |
| 17 | | fnssres 6004 |
. . . . . . 7
⊢
(((Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((Homf
‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) |
| 18 | 14, 16, 17 | mp2an 708 |
. . . . . 6
⊢
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) |
| 19 | 18 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf
‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) |
| 20 | | funcres2c.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| 21 | 20 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴⟶𝑆) |
| 22 | | ffn 6045 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) |
| 23 | 21, 22 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹 Fn 𝐴) |
| 24 | | frn 6053 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶𝑆 → ran 𝐹 ⊆ 𝑆) |
| 25 | 21, 24 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ 𝑆) |
| 26 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 27 | 5, 7, 26 | funcf1 16526 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹:𝐴⟶(Base‘𝐷)) |
| 28 | | frn 6053 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶(Base‘𝐷) → ran 𝐹 ⊆ (Base‘𝐷)) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐷)𝐺) → ran 𝐹 ⊆ (Base‘𝐷)) |
| 30 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 31 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺) |
| 32 | 5, 30, 31 | funcf1 16526 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹:𝐴⟶(Base‘𝐸)) |
| 33 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶(Base‘𝐸) → ran 𝐹 ⊆ (Base‘𝐸)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐸)) |
| 35 | | funcres2c.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝐷 ↾s 𝑆) |
| 36 | 35, 7 | ressbasss 15932 |
. . . . . . . . 9
⊢
(Base‘𝐸)
⊆ (Base‘𝐷) |
| 37 | 34, 36 | syl6ss 3615 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐷)) |
| 38 | 29, 37 | jaodan 826 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (Base‘𝐷)) |
| 39 | 25, 38 | ssind 3837 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷))) |
| 40 | | df-f 5892 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷)))) |
| 41 | 23, 39, 40 | sylanbrc 698 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷))) |
| 42 | | eqid 2622 |
. . . . . . . . 9
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 43 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 44 | | simplrl 800 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑥 ∈ 𝐴) |
| 45 | | simplrr 801 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑦 ∈ 𝐴) |
| 46 | 5, 6, 42, 43, 44, 45 | funcf2 16528 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 47 | | eqid 2622 |
. . . . . . . . . 10
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 48 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺) |
| 49 | | simplrl 800 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑥 ∈ 𝐴) |
| 50 | | simplrr 801 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑦 ∈ 𝐴) |
| 51 | 5, 6, 47, 48, 49, 50 | funcf2 16528 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
| 52 | | funcres2c.r |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 53 | 35, 42 | resshom 16078 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
| 55 | 54 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (Hom ‘𝐷) = (Hom ‘𝐸)) |
| 56 | 55 | oveqd 6667 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
| 57 | 56 | feq3d 6032 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
| 58 | 51, 57 | mpbird 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 59 | 46, 58 | jaodan 826 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 60 | 59 | an32s 846 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 61 | 41 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷))) |
| 62 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
| 63 | 61, 62 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐹‘𝑥) ∈ (𝑆 ∩ (Base‘𝐷))) |
| 64 | | simprr 796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
| 65 | 61, 64 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐹‘𝑦) ∈ (𝑆 ∩ (Base‘𝐷))) |
| 66 | 63, 65 | ovresd 6801 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥)((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹‘𝑦)) = ((𝐹‘𝑥)(Homf ‘𝐷)(𝐹‘𝑦))) |
| 67 | 10, 63 | sseldi 3601 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 68 | 10, 65 | sseldi 3601 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
| 69 | 8, 7, 42, 67, 68 | homfval 16352 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥)(Homf ‘𝐷)(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 70 | 66, 69 | eqtrd 2656 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥)((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 71 | 70 | feq3d 6032 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹‘𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
| 72 | 60, 71 | mpbird 247 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹‘𝑦))) |
| 73 | 5, 6, 13, 19, 41, 72 | funcres2b 16557 |
. . . 4
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺)) |
| 74 | | eqidd 2623 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (Homf
‘𝐶) =
(Homf ‘𝐶)) |
| 75 | | eqidd 2623 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) →
(compf‘𝐶) = (compf‘𝐶)) |
| 76 | 7 | ressinbas 15936 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝑉 → (𝐷 ↾s 𝑆) = (𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) |
| 77 | 52, 76 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐷 ↾s 𝑆) = (𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) |
| 78 | 35, 77 | syl5eq 2668 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 = (𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) |
| 79 | 78 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝜑 → (Homf
‘𝐸) =
(Homf ‘(𝐷 ↾s (𝑆 ∩ (Base‘𝐷))))) |
| 80 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝐷 ↾s (𝑆 ∩ (Base‘𝐷))) = (𝐷 ↾s (𝑆 ∩ (Base‘𝐷))) |
| 81 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) = (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) |
| 82 | 7, 8, 9, 11, 80, 81 | fullresc 16511 |
. . . . . . . . 9
⊢ (𝜑 → ((Homf
‘(𝐷
↾s (𝑆
∩ (Base‘𝐷)))) =
(Homf ‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))) ∧
(compf‘(𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))) |
| 83 | 82 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → (Homf
‘(𝐷
↾s (𝑆
∩ (Base‘𝐷)))) =
(Homf ‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
| 84 | 79, 83 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → (Homf
‘𝐸) =
(Homf ‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
| 85 | 84 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (Homf
‘𝐸) =
(Homf ‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
| 86 | 78 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝜑 →
(compf‘𝐸) = (compf‘(𝐷 ↾s (𝑆 ∩ (Base‘𝐷))))) |
| 87 | 82 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 →
(compf‘(𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
| 88 | 86, 87 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 →
(compf‘𝐸) = (compf‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
| 89 | 88 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) →
(compf‘𝐸) = (compf‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
| 90 | | df-br 4654 |
. . . . . . . . . . 11
⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 91 | | funcrcl 16523 |
. . . . . . . . . . 11
⊢
(〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 92 | 90, 91 | sylbi 207 |
. . . . . . . . . 10
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 93 | 92 | simpld 475 |
. . . . . . . . 9
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐶 ∈ Cat) |
| 94 | | df-br 4654 |
. . . . . . . . . . 11
⊢ (𝐹(𝐶 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐸)) |
| 95 | | funcrcl 16523 |
. . . . . . . . . . 11
⊢
(〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 96 | 94, 95 | sylbi 207 |
. . . . . . . . . 10
⊢ (𝐹(𝐶 Func 𝐸)𝐺 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 97 | 96 | simpld 475 |
. . . . . . . . 9
⊢ (𝐹(𝐶 Func 𝐸)𝐺 → 𝐶 ∈ Cat) |
| 98 | 93, 97 | jaoi 394 |
. . . . . . . 8
⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ Cat) |
| 99 | | elex 3212 |
. . . . . . . 8
⊢ (𝐶 ∈ Cat → 𝐶 ∈ V) |
| 100 | 98, 99 | syl 17 |
. . . . . . 7
⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ V) |
| 101 | 100 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐶 ∈ V) |
| 102 | | ovex 6678 |
. . . . . . . 8
⊢ (𝐷 ↾s 𝑆) ∈ V |
| 103 | 35, 102 | eqeltri 2697 |
. . . . . . 7
⊢ 𝐸 ∈ V |
| 104 | 103 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐸 ∈ V) |
| 105 | | ovex 6678 |
. . . . . . 7
⊢ (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) ∈ V |
| 106 | 105 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) ∈ V) |
| 107 | 74, 75, 85, 89, 101, 101, 104, 106 | funcpropd 16560 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐶 Func 𝐸) = (𝐶 Func (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
| 108 | 107 | breqd 4664 |
. . . 4
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐸)𝐺 ↔ 𝐹(𝐶 Func (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺)) |
| 109 | 73, 108 | bitr4d 271 |
. . 3
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺)) |
| 110 | 109 | ex 450 |
. 2
⊢ (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺) → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺))) |
| 111 | 2, 4, 110 | pm5.21ndd 369 |
1
⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺)) |