MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzadd Structured version   Visualization version   GIF version

Theorem gsumzadd 18322
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzadd.b 𝐵 = (Base‘𝐺)
gsumzadd.0 0 = (0g𝐺)
gsumzadd.p + = (+g𝐺)
gsumzadd.z 𝑍 = (Cntz‘𝐺)
gsumzadd.g (𝜑𝐺 ∈ Mnd)
gsumzadd.a (𝜑𝐴𝑉)
gsumzadd.fn (𝜑𝐹 finSupp 0 )
gsumzadd.hn (𝜑𝐻 finSupp 0 )
gsumzadd.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumzadd.c (𝜑𝑆 ⊆ (𝑍𝑆))
gsumzadd.f (𝜑𝐹:𝐴𝑆)
gsumzadd.h (𝜑𝐻:𝐴𝑆)
Assertion
Ref Expression
gsumzadd (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))

Proof of Theorem gsumzadd
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.b . 2 𝐵 = (Base‘𝐺)
2 gsumzadd.0 . 2 0 = (0g𝐺)
3 gsumzadd.p . 2 + = (+g𝐺)
4 gsumzadd.z . 2 𝑍 = (Cntz‘𝐺)
5 gsumzadd.g . 2 (𝜑𝐺 ∈ Mnd)
6 gsumzadd.a . 2 (𝜑𝐴𝑉)
7 gsumzadd.fn . 2 (𝜑𝐹 finSupp 0 )
8 gsumzadd.hn . 2 (𝜑𝐻 finSupp 0 )
9 eqid 2622 . 2 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
10 gsumzadd.f . . 3 (𝜑𝐹:𝐴𝑆)
11 gsumzadd.s . . . 4 (𝜑𝑆 ∈ (SubMnd‘𝐺))
121submss 17350 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆𝐵)
1311, 12syl 17 . . 3 (𝜑𝑆𝐵)
1410, 13fssd 6057 . 2 (𝜑𝐹:𝐴𝐵)
15 gsumzadd.h . . 3 (𝜑𝐻:𝐴𝑆)
1615, 13fssd 6057 . 2 (𝜑𝐻:𝐴𝐵)
17 gsumzadd.c . . 3 (𝜑𝑆 ⊆ (𝑍𝑆))
18 frn 6053 . . . 4 (𝐹:𝐴𝑆 → ran 𝐹𝑆)
1910, 18syl 17 . . 3 (𝜑 → ran 𝐹𝑆)
204cntzidss 17770 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2117, 19, 20syl2anc 693 . 2 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
22 frn 6053 . . . 4 (𝐻:𝐴𝑆 → ran 𝐻𝑆)
2315, 22syl 17 . . 3 (𝜑 → ran 𝐻𝑆)
244cntzidss 17770 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐻𝑆) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
2517, 23, 24syl2anc 693 . 2 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
263submcl 17353 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
27263expb 1266 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2811, 27sylan 488 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
29 inidm 3822 . . . . 5 (𝐴𝐴) = 𝐴
3028, 10, 15, 6, 6, 29off 6912 . . . 4 (𝜑 → (𝐹𝑓 + 𝐻):𝐴𝑆)
31 frn 6053 . . . 4 ((𝐹𝑓 + 𝐻):𝐴𝑆 → ran (𝐹𝑓 + 𝐻) ⊆ 𝑆)
3230, 31syl 17 . . 3 (𝜑 → ran (𝐹𝑓 + 𝐻) ⊆ 𝑆)
334cntzidss 17770 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran (𝐹𝑓 + 𝐻) ⊆ 𝑆) → ran (𝐹𝑓 + 𝐻) ⊆ (𝑍‘ran (𝐹𝑓 + 𝐻)))
3417, 32, 33syl2anc 693 . 2 (𝜑 → ran (𝐹𝑓 + 𝐻) ⊆ (𝑍‘ran (𝐹𝑓 + 𝐻)))
3517adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍𝑆))
3613adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆𝐵)
375adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝐺 ∈ Mnd)
38 vex 3203 . . . . . . . 8 𝑥 ∈ V
3938a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑥 ∈ V)
4011adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ∈ (SubMnd‘𝐺))
41 simpl 473 . . . . . . . 8 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑥𝐴)
42 fssres 6070 . . . . . . . 8 ((𝐻:𝐴𝑆𝑥𝐴) → (𝐻𝑥):𝑥𝑆)
4315, 41, 42syl2an 494 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥):𝑥𝑆)
4425adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
45 resss 5422 . . . . . . . . 9 (𝐻𝑥) ⊆ 𝐻
46 rnss 5354 . . . . . . . . 9 ((𝐻𝑥) ⊆ 𝐻 → ran (𝐻𝑥) ⊆ ran 𝐻)
4745, 46ax-mp 5 . . . . . . . 8 ran (𝐻𝑥) ⊆ ran 𝐻
484cntzidss 17770 . . . . . . . 8 ((ran 𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
4944, 47, 48sylancl 694 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
50 ffun 6048 . . . . . . . . . . 11 (𝐻:𝐴𝑆 → Fun 𝐻)
5115, 50syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
52 funres 5929 . . . . . . . . . 10 (Fun 𝐻 → Fun (𝐻𝑥))
5351, 52syl 17 . . . . . . . . 9 (𝜑 → Fun (𝐻𝑥))
5453adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → Fun (𝐻𝑥))
558fsuppimpd 8282 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ∈ Fin)
5655adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻 supp 0 ) ∈ Fin)
57 fex 6490 . . . . . . . . . . . 12 ((𝐻:𝐴𝑆𝐴𝑉) → 𝐻 ∈ V)
5815, 6, 57syl2anc 693 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
59 fvex 6201 . . . . . . . . . . . 12 (0g𝐺) ∈ V
602, 59eqeltri 2697 . . . . . . . . . . 11 0 ∈ V
61 ressuppss 7314 . . . . . . . . . . 11 ((𝐻 ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
6258, 60, 61sylancl 694 . . . . . . . . . 10 (𝜑 → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
6362adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
64 ssfi 8180 . . . . . . . . 9 (((𝐻 supp 0 ) ∈ Fin ∧ ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 )) → ((𝐻𝑥) supp 0 ) ∈ Fin)
6556, 63, 64syl2anc 693 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ∈ Fin)
66 resfunexg 6479 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ V) → (𝐻𝑥) ∈ V)
6751, 38, 66sylancl 694 . . . . . . . . . 10 (𝜑 → (𝐻𝑥) ∈ V)
68 isfsupp 8279 . . . . . . . . . 10 (((𝐻𝑥) ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6967, 60, 68sylancl 694 . . . . . . . . 9 (𝜑 → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
7069adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
7154, 65, 70mpbir2and 957 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥) finSupp 0 )
722, 4, 37, 39, 40, 43, 49, 71gsumzsubmcl 18318 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ 𝑆)
7372snssd 4340 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆)
741, 4cntz2ss 17765 . . . . 5 ((𝑆𝐵 ∧ {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
7536, 73, 74syl2anc 693 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
7635, 75sstrd 3613 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
77 eldifi 3732 . . . . 5 (𝑘 ∈ (𝐴𝑥) → 𝑘𝐴)
7877adantl 482 . . . 4 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑘𝐴)
79 ffvelrn 6357 . . . 4 ((𝐹:𝐴𝑆𝑘𝐴) → (𝐹𝑘) ∈ 𝑆)
8010, 78, 79syl2an 494 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ 𝑆)
8176, 80sseldd 3604 . 2 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
821, 2, 3, 4, 5, 6, 7, 8, 9, 14, 16, 21, 25, 34, 81gsumzaddlem 18321 1 (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  wss 3574  {csn 4177   class class class wbr 4653  ran crn 5115  cres 5116  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  SubMndcsubmnd 17334  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750
This theorem is referenced by:  gsumadd  18323  gsumzsplit  18327
  Copyright terms: Public domain W3C validator