![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngidpropd | Structured version Visualization version GIF version |
Description: The ring identity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
rngidpropd | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | eqid 2622 | . . . . 5 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
3 | eqid 2622 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | 2, 3 | mgpbas 18495 | . . . 4 ⊢ (Base‘𝐾) = (Base‘(mulGrp‘𝐾)) |
5 | 1, 4 | syl6eq 2672 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
6 | rngidpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
7 | eqid 2622 | . . . . 5 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
8 | eqid 2622 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
9 | 7, 8 | mgpbas 18495 | . . . 4 ⊢ (Base‘𝐿) = (Base‘(mulGrp‘𝐿)) |
10 | 6, 9 | syl6eq 2672 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
11 | rngidpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
12 | eqid 2622 | . . . . . 6 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
13 | 2, 12 | mgpplusg 18493 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
14 | 13 | oveqi 6663 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
15 | eqid 2622 | . . . . . 6 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
16 | 7, 15 | mgpplusg 18493 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
17 | 16 | oveqi 6663 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
18 | 11, 14, 17 | 3eqtr3g 2679 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
19 | 5, 10, 18 | grpidpropd 17261 | . 2 ⊢ (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿))) |
20 | eqid 2622 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
21 | 2, 20 | ringidval 18503 | . 2 ⊢ (1r‘𝐾) = (0g‘(mulGrp‘𝐾)) |
22 | eqid 2622 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
23 | 7, 22 | ringidval 18503 | . 2 ⊢ (1r‘𝐿) = (0g‘(mulGrp‘𝐿)) |
24 | 19, 21, 23 | 3eqtr4g 2681 | 1 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 0gc0g 16100 mulGrpcmgp 18489 1rcur 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-mgp 18490 df-ur 18502 |
This theorem is referenced by: unitpropd 18697 subrgpropd 18814 lmodprop2d 18925 opsr1 19589 ply1mpl1 19627 zlm1 30007 hlhils1N 37238 |
Copyright terms: Public domain | W3C validator |