![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdegpropd | Structured version Visualization version GIF version |
Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
mdegpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
mdegpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
Ref | Expression |
---|---|
mdegpropd | ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegpropd.b1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | mdegpropd.b2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | |
3 | mdegpropd.p | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) | |
4 | 1, 2, 3 | mplbaspropd 19607 | . . 3 ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) |
5 | 1, 2, 3 | grpidpropd 17261 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝑆)) |
6 | 5 | oveq2d 6666 | . . . . 5 ⊢ (𝜑 → (𝑐 supp (0g‘𝑅)) = (𝑐 supp (0g‘𝑆))) |
7 | 6 | imaeq2d 5466 | . . . 4 ⊢ (𝜑 → ((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))) = ((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆)))) |
8 | 7 | supeq1d 8352 | . . 3 ⊢ (𝜑 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < ) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < )) |
9 | 4, 8 | mpteq12dv 4733 | . 2 ⊢ (𝜑 → (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < )) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < ))) |
10 | eqid 2622 | . . 3 ⊢ (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑅) | |
11 | eqid 2622 | . . 3 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
12 | eqid 2622 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
13 | eqid 2622 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
14 | eqid 2622 | . . 3 ⊢ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
15 | eqid 2622 | . . 3 ⊢ (𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) | |
16 | 10, 11, 12, 13, 14, 15 | mdegfval 23822 | . 2 ⊢ (𝐼 mDeg 𝑅) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑅))), ℝ*, < )) |
17 | eqid 2622 | . . 3 ⊢ (𝐼 mDeg 𝑆) = (𝐼 mDeg 𝑆) | |
18 | eqid 2622 | . . 3 ⊢ (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆) | |
19 | eqid 2622 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆)) | |
20 | eqid 2622 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
21 | 17, 18, 19, 20, 14, 15 | mdegfval 23822 | . 2 ⊢ (𝐼 mDeg 𝑆) = (𝑐 ∈ (Base‘(𝐼 mPoly 𝑆)) ↦ sup(((𝑏 ∈ {𝑎 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝑐 supp (0g‘𝑆))), ℝ*, < )) |
22 | 9, 16, 21 | 3eqtr4g 2681 | 1 ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ↦ cmpt 4729 ◡ccnv 5113 “ cima 5117 ‘cfv 5888 (class class class)co 6650 supp csupp 7295 ↑𝑚 cmap 7857 Fincfn 7955 supcsup 8346 ℝ*cxr 10073 < clt 10074 ℕcn 11020 ℕ0cn0 11292 Basecbs 15857 +gcplusg 15941 0gc0g 16100 Σg cgsu 16101 mPoly cmpl 19353 ℂfldccnfld 19746 mDeg cmdg 23813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-tset 15960 df-0g 16102 df-psr 19356 df-mpl 19358 df-mdeg 23815 |
This theorem is referenced by: deg1propd 23846 |
Copyright terms: Public domain | W3C validator |