| Step | Hyp | Ref
| Expression |
| 1 | | gsumval3.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | gsumval3.0 |
. . 3
⊢ 0 =
(0g‘𝐺) |
| 3 | | gsumval3.p |
. . 3
⊢ + =
(+g‘𝐺) |
| 4 | | eqid 2622 |
. . 3
⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} |
| 5 | | gsumval3a.w |
. . . . 5
⊢ 𝑊 = (𝐹 supp 0 ) |
| 6 | 5 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑊 = (𝐹 supp 0 )) |
| 7 | | gsumval3.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 8 | | gsumval3.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 9 | 7, 8 | jca 554 |
. . . . . 6
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉)) |
| 10 | | fex 6490 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
| 11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
| 12 | | fvex 6201 |
. . . . . 6
⊢
(0g‘𝐺) ∈ V |
| 13 | 2, 12 | eqeltri 2697 |
. . . . 5
⊢ 0 ∈
V |
| 14 | | suppimacnv 7306 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 0 ∈ V)
→ (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 15 | 11, 13, 14 | sylancl 694 |
. . . 4
⊢ (𝜑 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 16 | | gsumval3.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 17 | 1, 2, 3, 4 | gsumvallem2 17372 |
. . . . . . . 8
⊢ (𝐺 ∈ Mnd → {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 }) |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 }) |
| 19 | 18 | eqcomd 2628 |
. . . . . 6
⊢ (𝜑 → { 0 } = {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}) |
| 20 | 19 | difeq2d 3728 |
. . . . 5
⊢ (𝜑 → (V ∖ { 0 }) = (V
∖ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})) |
| 21 | 20 | imaeq2d 5466 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) = (◡𝐹 “ (V ∖ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))) |
| 22 | 6, 15, 21 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))) |
| 23 | 1, 2, 3, 4, 22, 16, 8, 7 | gsumval 17271 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊))))))) |
| 24 | | gsumval3a.n |
. . . 4
⊢ (𝜑 → 𝑊 ≠ ∅) |
| 25 | 18 | sseq2d 3633 |
. . . . . 6
⊢ (𝜑 → (ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} ↔ ran 𝐹 ⊆ { 0 })) |
| 26 | 5 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = (𝐹 supp 0 )) |
| 27 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉)) |
| 28 | 27, 10 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 ∈ V) |
| 29 | 28, 13, 14 | sylancl 694 |
. . . . . . . 8
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 30 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 31 | 7, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 32 | 31 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 Fn 𝐴) |
| 33 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → ran 𝐹 ⊆ { 0 }) |
| 34 | | df-f 5892 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶{ 0 } ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ { 0 })) |
| 35 | 32, 33, 34 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹:𝐴⟶{ 0 }) |
| 36 | | disjdif 4040 |
. . . . . . . . 9
⊢ ({ 0 } ∩ (V
∖ { 0 })) =
∅ |
| 37 | | fimacnvdisj 6083 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶{ 0 } ∧ ({ 0 } ∩ (V
∖ { 0 })) = ∅) →
(◡𝐹 “ (V ∖ { 0 })) =
∅) |
| 38 | 35, 36, 37 | sylancl 694 |
. . . . . . . 8
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (◡𝐹 “ (V ∖ { 0 })) =
∅) |
| 39 | 26, 29, 38 | 3eqtrd 2660 |
. . . . . . 7
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = ∅) |
| 40 | 39 | ex 450 |
. . . . . 6
⊢ (𝜑 → (ran 𝐹 ⊆ { 0 } → 𝑊 = ∅)) |
| 41 | 25, 40 | sylbid 230 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} → 𝑊 = ∅)) |
| 42 | 41 | necon3ad 2807 |
. . . 4
⊢ (𝜑 → (𝑊 ≠ ∅ → ¬ ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})) |
| 43 | 24, 42 | mpd 15 |
. . 3
⊢ (𝜑 → ¬ ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}) |
| 44 | 43 | iffalsed 4097 |
. 2
⊢ (𝜑 → if(ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊)))))) = if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊)))))) |
| 45 | | gsumval3a.i |
. . 3
⊢ (𝜑 → ¬ 𝐴 ∈ ran ...) |
| 46 | 45 | iffalsed 4097 |
. 2
⊢ (𝜑 → if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊))))) = (℩𝑥∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊))))) |
| 47 | 23, 44, 46 | 3eqtrd 2660 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊))))) |