MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3a Structured version   Visualization version   Unicode version

Theorem gsumval3a 18304
Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3a.t  |-  ( ph  ->  W  e.  Fin )
gsumval3a.n  |-  ( ph  ->  W  =/=  (/) )
gsumval3a.w  |-  W  =  ( F supp  .0.  )
gsumval3a.i  |-  ( ph  ->  -.  A  e.  ran  ... )
Assertion
Ref Expression
gsumval3a  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
Distinct variable groups:    x, f,  .+    A, f, x    ph, f, x    x,  .0.    f, G, x   
x, V    B, f, x    f, F, x    f, W, x
Allowed substitution hints:    V( f)    .0. ( f)    Z( x, f)

Proof of Theorem gsumval3a
Dummy variables  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.b . . 3  |-  B  =  ( Base `  G
)
2 gsumval3.0 . . 3  |-  .0.  =  ( 0g `  G )
3 gsumval3.p . . 3  |-  .+  =  ( +g  `  G )
4 eqid 2622 . . 3  |-  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }  =  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }
5 gsumval3a.w . . . . 5  |-  W  =  ( F supp  .0.  )
65a1i 11 . . . 4  |-  ( ph  ->  W  =  ( F supp 
.0.  ) )
7 gsumval3.f . . . . . . 7  |-  ( ph  ->  F : A --> B )
8 gsumval3.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
97, 8jca 554 . . . . . 6  |-  ( ph  ->  ( F : A --> B  /\  A  e.  V
) )
10 fex 6490 . . . . . 6  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
119, 10syl 17 . . . . 5  |-  ( ph  ->  F  e.  _V )
12 fvex 6201 . . . . . 6  |-  ( 0g
`  G )  e. 
_V
132, 12eqeltri 2697 . . . . 5  |-  .0.  e.  _V
14 suppimacnv 7306 . . . . 5  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
1511, 13, 14sylancl 694 . . . 4  |-  ( ph  ->  ( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
16 gsumval3.g . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
171, 2, 3, 4gsumvallem2 17372 . . . . . . . 8  |-  ( G  e.  Mnd  ->  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }  =  {  .0.  } )
1816, 17syl 17 . . . . . . 7  |-  ( ph  ->  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  =  {  .0.  } )
1918eqcomd 2628 . . . . . 6  |-  ( ph  ->  {  .0.  }  =  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } )
2019difeq2d 3728 . . . . 5  |-  ( ph  ->  ( _V  \  {  .0.  } )  =  ( _V  \  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) } ) )
2120imaeq2d 5466 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  =  ( `' F "
( _V  \  {
z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ) ) )
226, 15, 213eqtrd 2660 . . 3  |-  ( ph  ->  W  =  ( `' F " ( _V 
\  { z  e.  B  |  A. y  e.  B  ( (
z  .+  y )  =  y  /\  (
y  .+  z )  =  y ) } ) ) )
231, 2, 3, 4, 22, 16, 8, 7gsumval 17271 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ,  .0.  ,  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) ) ) )
24 gsumval3a.n . . . 4  |-  ( ph  ->  W  =/=  (/) )
2518sseq2d 3633 . . . . . 6  |-  ( ph  ->  ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  <->  ran  F  C_  {  .0.  } ) )
265a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  W  =  ( F supp  .0.  ) )
279adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  -> 
( F : A --> B  /\  A  e.  V
) )
2827, 10syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  F  e.  _V )
2928, 13, 14sylancl 694 . . . . . . . 8  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  -> 
( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
30 ffn 6045 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  F  Fn  A )
317, 30syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  A )
3231adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  F  Fn  A )
33 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  ran  F  C_  {  .0.  } )
34 df-f 5892 . . . . . . . . . 10  |-  ( F : A --> {  .0.  }  <-> 
( F  Fn  A  /\  ran  F  C_  {  .0.  } ) )
3532, 33, 34sylanbrc 698 . . . . . . . . 9  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  F : A --> {  .0.  } )
36 disjdif 4040 . . . . . . . . 9  |-  ( {  .0.  }  i^i  ( _V  \  {  .0.  }
) )  =  (/)
37 fimacnvdisj 6083 . . . . . . . . 9  |-  ( ( F : A --> {  .0.  }  /\  ( {  .0.  }  i^i  ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( `' F " ( _V 
\  {  .0.  }
) )  =  (/) )
3835, 36, 37sylancl 694 . . . . . . . 8  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  -> 
( `' F "
( _V  \  {  .0.  } ) )  =  (/) )
3926, 29, 383eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  W  =  (/) )
4039ex 450 . . . . . 6  |-  ( ph  ->  ( ran  F  C_  {  .0.  }  ->  W  =  (/) ) )
4125, 40sylbid 230 . . . . 5  |-  ( ph  ->  ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  ->  W  =  (/) ) )
4241necon3ad 2807 . . . 4  |-  ( ph  ->  ( W  =/=  (/)  ->  -.  ran  F  C_  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) } ) )
4324, 42mpd 15 . . 3  |-  ( ph  ->  -.  ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } )
4443iffalsed 4097 . 2  |-  ( ph  ->  if ( ran  F  C_ 
{ z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ,  .0.  ,  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) ) )  =  if ( A  e.  ran  ... , 
( iota x E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )
45 gsumval3a.i . . 3  |-  ( ph  ->  -.  A  e.  ran  ... )
4645iffalsed 4097 . 2  |-  ( ph  ->  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )  =  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) )
4723, 44, 463eqtrd 2660 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   iotacio 5849    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   1c1 9937   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by:  gsumval3lem2  18307
  Copyright terms: Public domain W3C validator