MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphindis Structured version   Visualization version   GIF version

Theorem hmphindis 21600
Description: Homeomorphisms preserve topological indiscretion. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphindis (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋})

Proof of Theorem hmphindis
StepHypRef Expression
1 dfsn2 4190 . . 3 {∅} = {∅, ∅}
2 indislem 20804 . . . . . . 7 {∅, ( I ‘𝐴)} = {∅, 𝐴}
3 preq2 4269 . . . . . . . 8 (( I ‘𝐴) = ∅ → {∅, ( I ‘𝐴)} = {∅, ∅})
43, 1syl6eqr 2674 . . . . . . 7 (( I ‘𝐴) = ∅ → {∅, ( I ‘𝐴)} = {∅})
52, 4syl5eqr 2670 . . . . . 6 (( I ‘𝐴) = ∅ → {∅, 𝐴} = {∅})
65breq2d 4665 . . . . 5 (( I ‘𝐴) = ∅ → (𝐽 ≃ {∅, 𝐴} ↔ 𝐽 ≃ {∅}))
76biimpac 503 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 ≃ {∅})
8 hmph0 21598 . . . 4 (𝐽 ≃ {∅} ↔ 𝐽 = {∅})
97, 8sylib 208 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅})
109unieqd 4446 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅})
11 hmphdis.1 . . . . 5 𝑋 = 𝐽
12 0ex 4790 . . . . . . 7 ∅ ∈ V
1312unisn 4451 . . . . . 6 {∅} = ∅
1413eqcomi 2631 . . . . 5 ∅ = {∅}
1510, 11, 143eqtr4g 2681 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝑋 = ∅)
1615preq2d 4275 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → {∅, 𝑋} = {∅, ∅})
171, 9, 163eqtr4a 2682 . 2 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) = ∅) → 𝐽 = {∅, 𝑋})
18 hmphen 21588 . . . . . 6 (𝐽 ≃ {∅, 𝐴} → 𝐽 ≈ {∅, 𝐴})
1918adantr 481 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ≈ {∅, 𝐴})
20 necom 2847 . . . . . . . 8 (( I ‘𝐴) ≠ ∅ ↔ ∅ ≠ ( I ‘𝐴))
21 fvex 6201 . . . . . . . . 9 ( I ‘𝐴) ∈ V
22 pr2nelem 8827 . . . . . . . . 9 ((∅ ∈ V ∧ ( I ‘𝐴) ∈ V ∧ ∅ ≠ ( I ‘𝐴)) → {∅, ( I ‘𝐴)} ≈ 2𝑜)
2312, 21, 22mp3an12 1414 . . . . . . . 8 (∅ ≠ ( I ‘𝐴) → {∅, ( I ‘𝐴)} ≈ 2𝑜)
2420, 23sylbi 207 . . . . . . 7 (( I ‘𝐴) ≠ ∅ → {∅, ( I ‘𝐴)} ≈ 2𝑜)
2524adantl 482 . . . . . 6 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → {∅, ( I ‘𝐴)} ≈ 2𝑜)
262, 25syl5eqbrr 4689 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → {∅, 𝐴} ≈ 2𝑜)
27 entr 8008 . . . . 5 ((𝐽 ≈ {∅, 𝐴} ∧ {∅, 𝐴} ≈ 2𝑜) → 𝐽 ≈ 2𝑜)
2819, 26, 27syl2anc 693 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ≈ 2𝑜)
29 hmphtop1 21582 . . . . . . 7 (𝐽 ≃ {∅, 𝐴} → 𝐽 ∈ Top)
3029adantr 481 . . . . . 6 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ∈ Top)
3111toptopon 20722 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3230, 31sylib 208 . . . . 5 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 ∈ (TopOn‘𝑋))
33 en2top 20789 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2𝑜 ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
3432, 33syl 17 . . . 4 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → (𝐽 ≈ 2𝑜 ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
3528, 34mpbid 222 . . 3 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
3635simpld 475 . 2 ((𝐽 ≃ {∅, 𝐴} ∧ ( I ‘𝐴) ≠ ∅) → 𝐽 = {∅, 𝑋})
3717, 36pm2.61dane 2881 1 (𝐽 ≃ {∅, 𝐴} → 𝐽 = {∅, 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  c0 3915  {csn 4177  {cpr 4179   cuni 4436   class class class wbr 4653   I cid 5023  cfv 5888  2𝑜c2o 7554  cen 7952  Topctop 20698  TopOnctopon 20715  chmph 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-top 20699  df-topon 20716  df-cn 21031  df-hmeo 21558  df-hmph 21559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator