MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indishmph Structured version   Visualization version   GIF version

Theorem indishmph 21601
Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
indishmph (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})

Proof of Theorem indishmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 7964 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 6137 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 f1odm 6141 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
4 vex 3203 . . . . . . . . . . 11 𝑓 ∈ V
54dmex 7099 . . . . . . . . . 10 dom 𝑓 ∈ V
63, 5syl6eqelr 2710 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
7 f1ofo 6144 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
8 fornex 7135 . . . . . . . . 9 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
96, 7, 8sylc 65 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
109, 6elmapd 7871 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐵𝑚 𝐴) ↔ 𝑓:𝐴𝐵))
112, 10mpbird 247 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐵𝑚 𝐴))
12 indistopon 20805 . . . . . . . 8 (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴))
136, 12syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ∈ (TopOn‘𝐴))
14 cnindis 21096 . . . . . . 7 (({∅, 𝐴} ∈ (TopOn‘𝐴) ∧ 𝐵 ∈ V) → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵𝑚 𝐴))
1513, 9, 14syl2anc 693 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵𝑚 𝐴))
1611, 15eleqtrrd 2704 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}))
17 f1ocnv 6149 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
18 f1of 6137 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
1917, 18syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵𝐴)
206, 9elmapd 7871 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐴𝑚 𝐵) ↔ 𝑓:𝐵𝐴))
2119, 20mpbird 247 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐴𝑚 𝐵))
22 indistopon 20805 . . . . . . . 8 (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵))
239, 22syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐵} ∈ (TopOn‘𝐵))
24 cnindis 21096 . . . . . . 7 (({∅, 𝐵} ∈ (TopOn‘𝐵) ∧ 𝐴 ∈ V) → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴𝑚 𝐵))
2523, 6, 24syl2anc 693 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴𝑚 𝐵))
2621, 25eleqtrrd 2704 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴}))
27 ishmeo 21562 . . . . 5 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) ↔ (𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}) ∧ 𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴})))
2816, 26, 27sylanbrc 698 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}))
29 hmphi 21580 . . . 4 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) → {∅, 𝐴} ≃ {∅, 𝐵})
3028, 29syl 17 . . 3 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
3130exlimiv 1858 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
321, 31sylbi 207 1 (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  c0 3915  {cpr 4179   class class class wbr 4653  ccnv 5113  dom cdm 5114  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cen 7952  TopOnctopon 20715   Cn ccn 21028  Homeochmeo 21556  chmph 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-map 7859  df-en 7956  df-top 20699  df-topon 20716  df-cn 21031  df-hmeo 21558  df-hmph 21559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator