| Step | Hyp | Ref
| Expression |
| 1 | | bren 7964 |
. 2
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 2 | | f1of 6137 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) |
| 3 | | f1odm 6141 |
. . . . . . . . . 10
⊢ (𝑓:𝐴–1-1-onto→𝐵 → dom 𝑓 = 𝐴) |
| 4 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
| 5 | 4 | dmex 7099 |
. . . . . . . . . 10
⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | syl6eqelr 2710 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 7 | | f1ofo 6144 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) |
| 8 | | fornex 7135 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| 9 | 6, 7, 8 | sylc 65 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 10 | 9, 6 | elmapd 7871 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑓 ∈ (𝐵 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝐵)) |
| 11 | 2, 10 | mpbird 247 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ (𝐵 ↑𝑚 𝐴)) |
| 12 | | indistopon 20805 |
. . . . . . . 8
⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) |
| 13 | 6, 12 | syl 17 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ∈ (TopOn‘𝐴)) |
| 14 | | cnindis 21096 |
. . . . . . 7
⊢
(({∅, 𝐴}
∈ (TopOn‘𝐴)
∧ 𝐵 ∈ V) →
({∅, 𝐴} Cn {∅,
𝐵}) = (𝐵 ↑𝑚 𝐴)) |
| 15 | 13, 9, 14 | syl2anc 693 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵 ↑𝑚 𝐴)) |
| 16 | 11, 15 | eleqtrrd 2704 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵})) |
| 17 | | f1ocnv 6149 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) |
| 18 | | f1of 6137 |
. . . . . . . 8
⊢ (◡𝑓:𝐵–1-1-onto→𝐴 → ◡𝑓:𝐵⟶𝐴) |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵⟶𝐴) |
| 20 | 6, 9 | elmapd 7871 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → (◡𝑓 ∈ (𝐴 ↑𝑚 𝐵) ↔ ◡𝑓:𝐵⟶𝐴)) |
| 21 | 19, 20 | mpbird 247 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓 ∈ (𝐴 ↑𝑚 𝐵)) |
| 22 | | indistopon 20805 |
. . . . . . . 8
⊢ (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵)) |
| 23 | 9, 22 | syl 17 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐵} ∈ (TopOn‘𝐵)) |
| 24 | | cnindis 21096 |
. . . . . . 7
⊢
(({∅, 𝐵}
∈ (TopOn‘𝐵)
∧ 𝐴 ∈ V) →
({∅, 𝐵} Cn {∅,
𝐴}) = (𝐴 ↑𝑚 𝐵)) |
| 25 | 23, 6, 24 | syl2anc 693 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴 ↑𝑚 𝐵)) |
| 26 | 21, 25 | eleqtrrd 2704 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴})) |
| 27 | | ishmeo 21562 |
. . . . 5
⊢ (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) ↔ (𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}) ∧ ◡𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴}))) |
| 28 | 16, 26, 27 | sylanbrc 698 |
. . . 4
⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵})) |
| 29 | | hmphi 21580 |
. . . 4
⊢ (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) → {∅, 𝐴} ≃ {∅, 𝐵}) |
| 30 | 28, 29 | syl 17 |
. . 3
⊢ (𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) |
| 31 | 30 | exlimiv 1858 |
. 2
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) |
| 32 | 1, 31 | sylbi 207 |
1
⊢ (𝐴 ≈ 𝐵 → {∅, 𝐴} ≃ {∅, 𝐵}) |