MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphindis Structured version   Visualization version   Unicode version

Theorem hmphindis 21600
Description: Homeomorphisms preserve topological indiscretion. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1  |-  X  = 
U. J
Assertion
Ref Expression
hmphindis  |-  ( J  ~=  { (/) ,  A }  ->  J  =  { (/)
,  X } )

Proof of Theorem hmphindis
StepHypRef Expression
1 dfsn2 4190 . . 3  |-  { (/) }  =  { (/) ,  (/) }
2 indislem 20804 . . . . . . 7  |-  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A }
3 preq2 4269 . . . . . . . 8  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  (  _I  `  A
) }  =  { (/)
,  (/) } )
43, 1syl6eqr 2674 . . . . . . 7  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  (  _I  `  A
) }  =  { (/)
} )
52, 4syl5eqr 2670 . . . . . 6  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  A }  =  { (/)
} )
65breq2d 4665 . . . . 5  |-  ( (  _I  `  A )  =  (/)  ->  ( J  ~=  { (/) ,  A } 
<->  J  ~=  { (/) } ) )
76biimpac 503 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  ~=  {
(/) } )
8 hmph0 21598 . . . 4  |-  ( J  ~=  { (/) }  <->  J  =  { (/) } )
97, 8sylib 208 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  =  { (/) } )
109unieqd 4446 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  U. J  =  U. { (/) } )
11 hmphdis.1 . . . . 5  |-  X  = 
U. J
12 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
1312unisn 4451 . . . . . 6  |-  U. { (/)
}  =  (/)
1413eqcomi 2631 . . . . 5  |-  (/)  =  U. { (/) }
1510, 11, 143eqtr4g 2681 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  X  =  (/) )
1615preq2d 4275 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  { (/) ,  X }  =  { (/)
,  (/) } )
171, 9, 163eqtr4a 2682 . 2  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  =  { (/) ,  X }
)
18 hmphen 21588 . . . . . 6  |-  ( J  ~=  { (/) ,  A }  ->  J  ~~  { (/)
,  A } )
1918adantr 481 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  ~~  {
(/) ,  A }
)
20 necom 2847 . . . . . . . 8  |-  ( (  _I  `  A )  =/=  (/)  <->  (/)  =/=  (  _I 
`  A ) )
21 fvex 6201 . . . . . . . . 9  |-  (  _I 
`  A )  e. 
_V
22 pr2nelem 8827 . . . . . . . . 9  |-  ( (
(/)  e.  _V  /\  (  _I  `  A )  e. 
_V  /\  (/)  =/=  (  _I  `  A ) )  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2312, 21, 22mp3an12 1414 . . . . . . . 8  |-  ( (/)  =/=  (  _I  `  A
)  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2420, 23sylbi 207 . . . . . . 7  |-  ( (  _I  `  A )  =/=  (/)  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2524adantl 482 . . . . . 6  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  { (/) ,  (  _I  `  A
) }  ~~  2o )
262, 25syl5eqbrr 4689 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  { (/) ,  A }  ~~  2o )
27 entr 8008 . . . . 5  |-  ( ( J  ~~  { (/) ,  A }  /\  { (/)
,  A }  ~~  2o )  ->  J  ~~  2o )
2819, 26, 27syl2anc 693 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  ~~  2o )
29 hmphtop1 21582 . . . . . . 7  |-  ( J  ~=  { (/) ,  A }  ->  J  e.  Top )
3029adantr 481 . . . . . 6  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  e. 
Top )
3111toptopon 20722 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3230, 31sylib 208 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  e.  (TopOn `  X )
)
33 en2top 20789 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( J  ~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )
3432, 33syl 17 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  ( J 
~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )
3528, 34mpbid 222 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )
3635simpld 475 . 2  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  =  { (/) ,  X }
)
3717, 36pm2.61dane 2881 1  |-  ( J  ~=  { (/) ,  A }  ->  J  =  { (/)
,  X } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   {csn 4177   {cpr 4179   U.cuni 4436   class class class wbr 4653    _I cid 5023   ` cfv 5888   2oc2o 7554    ~~ cen 7952   Topctop 20698  TopOnctopon 20715    ~= chmph 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-top 20699  df-topon 20716  df-cn 21031  df-hmeo 21558  df-hmph 21559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator