MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem6 Structured version   Visualization version   Unicode version

Theorem inf3lem6 8530
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
inf3lem.2  |-  F  =  ( rec ( G ,  (/) )  |`  om )
inf3lem.3  |-  A  e. 
_V
inf3lem.4  |-  B  e. 
_V
Assertion
Ref Expression
inf3lem6  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  ->  F : om -1-1-> ~P x
)
Distinct variable group:    x, y, w
Allowed substitution hints:    A( x, y, w)    B( x, y, w)    F( x, y, w)    G( x, y, w)

Proof of Theorem inf3lem6
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . . . . . . . . 11  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
2 inf3lem.2 . . . . . . . . . . 11  |-  F  =  ( rec ( G ,  (/) )  |`  om )
3 vex 3203 . . . . . . . . . . 11  |-  u  e. 
_V
4 vex 3203 . . . . . . . . . . 11  |-  v  e. 
_V
51, 2, 3, 4inf3lem5 8529 . . . . . . . . . 10  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( ( u  e. 
om  /\  v  e.  u )  ->  ( F `  v )  C.  ( F `  u
) ) )
6 dfpss2 3692 . . . . . . . . . . 11  |-  ( ( F `  v ) 
C.  ( F `  u )  <->  ( ( F `  v )  C_  ( F `  u
)  /\  -.  ( F `  v )  =  ( F `  u ) ) )
76simprbi 480 . . . . . . . . . 10  |-  ( ( F `  v ) 
C.  ( F `  u )  ->  -.  ( F `  v )  =  ( F `  u ) )
85, 7syl6 35 . . . . . . . . 9  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( ( u  e. 
om  /\  v  e.  u )  ->  -.  ( F `  v )  =  ( F `  u ) ) )
98expdimp 453 . . . . . . . 8  |-  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  /\  u  e.  om )  ->  ( v  e.  u  ->  -.  ( F `  v )  =  ( F `  u ) ) )
109adantrl 752 . . . . . . 7  |-  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  /\  ( v  e.  om  /\  u  e.  om )
)  ->  ( v  e.  u  ->  -.  ( F `  v )  =  ( F `  u ) ) )
111, 2, 4, 3inf3lem5 8529 . . . . . . . . . 10  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( ( v  e. 
om  /\  u  e.  v )  ->  ( F `  u )  C.  ( F `  v
) ) )
12 dfpss2 3692 . . . . . . . . . . . 12  |-  ( ( F `  u ) 
C.  ( F `  v )  <->  ( ( F `  u )  C_  ( F `  v
)  /\  -.  ( F `  u )  =  ( F `  v ) ) )
1312simprbi 480 . . . . . . . . . . 11  |-  ( ( F `  u ) 
C.  ( F `  v )  ->  -.  ( F `  u )  =  ( F `  v ) )
14 eqcom 2629 . . . . . . . . . . 11  |-  ( ( F `  u )  =  ( F `  v )  <->  ( F `  v )  =  ( F `  u ) )
1513, 14sylnib 318 . . . . . . . . . 10  |-  ( ( F `  u ) 
C.  ( F `  v )  ->  -.  ( F `  v )  =  ( F `  u ) )
1611, 15syl6 35 . . . . . . . . 9  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( ( v  e. 
om  /\  u  e.  v )  ->  -.  ( F `  v )  =  ( F `  u ) ) )
1716expdimp 453 . . . . . . . 8  |-  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  /\  v  e.  om )  ->  ( u  e.  v  ->  -.  ( F `  v )  =  ( F `  u ) ) )
1817adantrr 753 . . . . . . 7  |-  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  /\  ( v  e.  om  /\  u  e.  om )
)  ->  ( u  e.  v  ->  -.  ( F `  v )  =  ( F `  u ) ) )
1910, 18jaod 395 . . . . . 6  |-  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  /\  ( v  e.  om  /\  u  e.  om )
)  ->  ( (
v  e.  u  \/  u  e.  v )  ->  -.  ( F `  v )  =  ( F `  u ) ) )
2019con2d 129 . . . . 5  |-  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  /\  ( v  e.  om  /\  u  e.  om )
)  ->  ( ( F `  v )  =  ( F `  u )  ->  -.  ( v  e.  u  \/  u  e.  v
) ) )
21 nnord 7073 . . . . . . 7  |-  ( v  e.  om  ->  Ord  v )
22 nnord 7073 . . . . . . 7  |-  ( u  e.  om  ->  Ord  u )
23 ordtri3 5759 . . . . . . 7  |-  ( ( Ord  v  /\  Ord  u )  ->  (
v  =  u  <->  -.  (
v  e.  u  \/  u  e.  v ) ) )
2421, 22, 23syl2an 494 . . . . . 6  |-  ( ( v  e.  om  /\  u  e.  om )  ->  ( v  =  u  <->  -.  ( v  e.  u  \/  u  e.  v
) ) )
2524adantl 482 . . . . 5  |-  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  /\  ( v  e.  om  /\  u  e.  om )
)  ->  ( v  =  u  <->  -.  ( v  e.  u  \/  u  e.  v ) ) )
2620, 25sylibrd 249 . . . 4  |-  ( ( ( x  =/=  (/)  /\  x  C_ 
U. x )  /\  ( v  e.  om  /\  u  e.  om )
)  ->  ( ( F `  v )  =  ( F `  u )  ->  v  =  u ) )
2726ralrimivva 2971 . . 3  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  ->  A. v  e.  om  A. u  e.  om  (
( F `  v
)  =  ( F `
 u )  -> 
v  =  u ) )
28 frfnom 7530 . . . . . 6  |-  ( rec ( G ,  (/) )  |`  om )  Fn 
om
29 fneq1 5979 . . . . . 6  |-  ( F  =  ( rec ( G ,  (/) )  |`  om )  ->  ( F  Fn  om  <->  ( rec ( G ,  (/) )  |`  om )  Fn  om )
)
3028, 29mpbiri 248 . . . . 5  |-  ( F  =  ( rec ( G ,  (/) )  |`  om )  ->  F  Fn  om )
31 fvelrnb 6243 . . . . . . . 8  |-  ( F  Fn  om  ->  (
u  e.  ran  F  <->  E. v  e.  om  ( F `  v )  =  u ) )
32 inf3lem.4 . . . . . . . . . . . 12  |-  B  e. 
_V
331, 2, 4, 32inf3lemd 8524 . . . . . . . . . . 11  |-  ( v  e.  om  ->  ( F `  v )  C_  x )
34 fvex 6201 . . . . . . . . . . . 12  |-  ( F `
 v )  e. 
_V
3534elpw 4164 . . . . . . . . . . 11  |-  ( ( F `  v )  e.  ~P x  <->  ( F `  v )  C_  x
)
3633, 35sylibr 224 . . . . . . . . . 10  |-  ( v  e.  om  ->  ( F `  v )  e.  ~P x )
37 eleq1 2689 . . . . . . . . . 10  |-  ( ( F `  v )  =  u  ->  (
( F `  v
)  e.  ~P x  <->  u  e.  ~P x ) )
3836, 37syl5ibcom 235 . . . . . . . . 9  |-  ( v  e.  om  ->  (
( F `  v
)  =  u  ->  u  e.  ~P x
) )
3938rexlimiv 3027 . . . . . . . 8  |-  ( E. v  e.  om  ( F `  v )  =  u  ->  u  e. 
~P x )
4031, 39syl6bi 243 . . . . . . 7  |-  ( F  Fn  om  ->  (
u  e.  ran  F  ->  u  e.  ~P x
) )
4140ssrdv 3609 . . . . . 6  |-  ( F  Fn  om  ->  ran  F 
C_  ~P x )
4241ancli 574 . . . . 5  |-  ( F  Fn  om  ->  ( F  Fn  om  /\  ran  F 
C_  ~P x ) )
432, 30, 42mp2b 10 . . . 4  |-  ( F  Fn  om  /\  ran  F 
C_  ~P x )
44 df-f 5892 . . . 4  |-  ( F : om --> ~P x  <->  ( F  Fn  om  /\  ran  F  C_  ~P x
) )
4543, 44mpbir 221 . . 3  |-  F : om
--> ~P x
4627, 45jctil 560 . 2  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F : om --> ~P x  /\  A. v  e.  om  A. u  e. 
om  ( ( F `
 v )  =  ( F `  u
)  ->  v  =  u ) ) )
47 dff13 6512 . 2  |-  ( F : om -1-1-> ~P x  <->  ( F : om --> ~P x  /\  A. v  e.  om  A. u  e.  om  (
( F `  v
)  =  ( F `
 u )  -> 
v  =  u ) ) )
4846, 47sylibr 224 1  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  ->  F : om -1-1-> ~P x
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   ~Pcpw 4158   U.cuni 4436    |-> cmpt 4729   ran crn 5115    |` cres 5116   Ord word 5722    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  inf3lem7  8531  dominf  9267  dominfac  9395
  Copyright terms: Public domain W3C validator