MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infltoreq Structured version   Visualization version   Unicode version

Theorem infltoreq 8408
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infltoreq.1  |-  ( ph  ->  R  Or  A )
infltoreq.2  |-  ( ph  ->  B  C_  A )
infltoreq.3  |-  ( ph  ->  B  e.  Fin )
infltoreq.4  |-  ( ph  ->  C  e.  B )
infltoreq.5  |-  ( ph  ->  S  = inf ( B ,  A ,  R
) )
Assertion
Ref Expression
infltoreq  |-  ( ph  ->  ( S R C  \/  C  =  S ) )

Proof of Theorem infltoreq
StepHypRef Expression
1 infltoreq.1 . . . 4  |-  ( ph  ->  R  Or  A )
2 cnvso 5674 . . . 4  |-  ( R  Or  A  <->  `' R  Or  A )
31, 2sylib 208 . . 3  |-  ( ph  ->  `' R  Or  A
)
4 infltoreq.2 . . 3  |-  ( ph  ->  B  C_  A )
5 infltoreq.3 . . 3  |-  ( ph  ->  B  e.  Fin )
6 infltoreq.4 . . 3  |-  ( ph  ->  C  e.  B )
7 infltoreq.5 . . . 4  |-  ( ph  ->  S  = inf ( B ,  A ,  R
) )
8 df-inf 8349 . . . 4  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
97, 8syl6eq 2672 . . 3  |-  ( ph  ->  S  =  sup ( B ,  A ,  `' R ) )
103, 4, 5, 6, 9supgtoreq 8376 . 2  |-  ( ph  ->  ( C `' R S  \/  C  =  S ) )
11 ne0i 3921 . . . . . . 7  |-  ( C  e.  B  ->  B  =/=  (/) )
126, 11syl 17 . . . . . 6  |-  ( ph  ->  B  =/=  (/) )
13 fiinfcl 8407 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> inf ( B ,  A ,  R )  e.  B
)
141, 5, 12, 4, 13syl13anc 1328 . . . . 5  |-  ( ph  -> inf ( B ,  A ,  R )  e.  B
)
157, 14eqeltrd 2701 . . . 4  |-  ( ph  ->  S  e.  B )
16 brcnvg 5303 . . . . 5  |-  ( ( C  e.  B  /\  S  e.  B )  ->  ( C `' R S 
<->  S R C ) )
1716bicomd 213 . . . 4  |-  ( ( C  e.  B  /\  S  e.  B )  ->  ( S R C  <-> 
C `' R S ) )
186, 15, 17syl2anc 693 . . 3  |-  ( ph  ->  ( S R C  <-> 
C `' R S ) )
1918orbi1d 739 . 2  |-  ( ph  ->  ( ( S R C  \/  C  =  S )  <->  ( C `' R S  \/  C  =  S ) ) )
2010, 19mpbird 247 1  |-  ( ph  ->  ( S R C  \/  C  =  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   `'ccnv 5113   Fincfn 7955   supcsup 8346  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-sup 8348  df-inf 8349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator