Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrgelbrnmpt Structured version   Visualization version   GIF version

Theorem infxrgelbrnmpt 39683
Description: The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infxrgelbrnmpt.x 𝑥𝜑
infxrgelbrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infxrgelbrnmpt.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
infxrgelbrnmpt (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑥𝐴 𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem infxrgelbrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infxrgelbrnmpt.x . . . 4 𝑥𝜑
2 eqid 2622 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 infxrgelbrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 39385 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
5 infxrgelbrnmpt.c . . 3 (𝜑𝐶 ∈ ℝ*)
6 infxrgelb 12165 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ*𝐶 ∈ ℝ*) → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧))
74, 5, 6syl2anc 693 . 2 (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧))
8 nfmpt1 4747 . . . . . . 7 𝑥(𝑥𝐴𝐵)
98nfrn 5368 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
10 nfv 1843 . . . . . 6 𝑥 𝐶𝑧
119, 10nfral 2945 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧
121, 11nfan 1828 . . . 4 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
13 simpr 477 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
142elrnmpt1 5374 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1513, 3, 14syl2anc 693 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1615adantlr 751 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
17 simplr 792 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
18 breq2 4657 . . . . . . 7 (𝑧 = 𝐵 → (𝐶𝑧𝐶𝐵))
1918rspcva 3307 . . . . . 6 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → 𝐶𝐵)
2016, 17, 19syl2anc 693 . . . . 5 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → 𝐶𝐵)
2120ex 450 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → (𝑥𝐴𝐶𝐵))
2212, 21ralrimi 2957 . . 3 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → ∀𝑥𝐴 𝐶𝐵)
23 vex 3203 . . . . . . . . 9 𝑧 ∈ V
242elrnmpt 5372 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2523, 24ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
2625biimpi 206 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
2726adantl 482 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
28 nfra1 2941 . . . . . . . 8 𝑥𝑥𝐴 𝐶𝐵
29 rspa 2930 . . . . . . . . . 10 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶𝐵)
3018biimprcd 240 . . . . . . . . . 10 (𝐶𝐵 → (𝑧 = 𝐵𝐶𝑧))
3129, 30syl 17 . . . . . . . . 9 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → (𝑧 = 𝐵𝐶𝑧))
3231ex 450 . . . . . . . 8 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝐶𝑧)))
3328, 10, 32rexlimd 3026 . . . . . . 7 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝐶𝑧))
3433adantr 481 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑧 = 𝐵𝐶𝑧))
3527, 34mpd 15 . . . . 5 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝐶𝑧)
3635ralrimiva 2966 . . . 4 (∀𝑥𝐴 𝐶𝐵 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
3736adantl 482 . . 3 ((𝜑 ∧ ∀𝑥𝐴 𝐶𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
3822, 37impbida 877 . 2 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧 ↔ ∀𝑥𝐴 𝐶𝐵))
397, 38bitrd 268 1 (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑥𝐴 𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  ran crn 5115  infcinf 8347  *cxr 10073   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator