| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isga | Structured version Visualization version Unicode version | ||
| Description: The predicate "is a
(left) group action." The group |
| Ref | Expression |
|---|---|
| isga.1 |
|
| isga.2 |
|
| isga.3 |
|
| Ref | Expression |
|---|---|
| isga |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ga 17723 |
. . 3
| |
| 2 | 1 | elmpt2cl 6876 |
. 2
|
| 3 | fvexd 6203 |
. . . . . . 7
| |
| 4 | simplr 792 |
. . . . . . . . 9
| |
| 5 | id 22 |
. . . . . . . . . . 11
| |
| 6 | simpl 473 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 8 | isga.1 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 10 | 5, 9 | sylan9eqr 2678 |
. . . . . . . . . 10
|
| 11 | 10, 4 | xpeq12d 5140 |
. . . . . . . . 9
|
| 12 | 4, 11 | oveq12d 6668 |
. . . . . . . 8
|
| 13 | simpll 790 |
. . . . . . . . . . . . . 14
| |
| 14 | 13 | fveq2d 6195 |
. . . . . . . . . . . . 13
|
| 15 | isga.3 |
. . . . . . . . . . . . 13
| |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . . . . . . 12
|
| 17 | 16 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 18 | 17 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 19 | 13 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
|
| 20 | isga.2 |
. . . . . . . . . . . . . . . 16
| |
| 21 | 19, 20 | syl6eqr 2674 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | oveqd 6667 |
. . . . . . . . . . . . . 14
|
| 23 | 22 | oveq1d 6665 |
. . . . . . . . . . . . 13
|
| 24 | 23 | eqeq1d 2624 |
. . . . . . . . . . . 12
|
| 25 | 10, 24 | raleqbidv 3152 |
. . . . . . . . . . 11
|
| 26 | 10, 25 | raleqbidv 3152 |
. . . . . . . . . 10
|
| 27 | 18, 26 | anbi12d 747 |
. . . . . . . . 9
|
| 28 | 4, 27 | raleqbidv 3152 |
. . . . . . . 8
|
| 29 | 12, 28 | rabeqbidv 3195 |
. . . . . . 7
|
| 30 | 3, 29 | csbied 3560 |
. . . . . 6
|
| 31 | ovex 6678 |
. . . . . . 7
| |
| 32 | 31 | rabex 4813 |
. . . . . 6
|
| 33 | 30, 1, 32 | ovmpt2a 6791 |
. . . . 5
|
| 34 | 33 | eleq2d 2687 |
. . . 4
|
| 35 | oveq 6656 |
. . . . . . . 8
| |
| 36 | 35 | eqeq1d 2624 |
. . . . . . 7
|
| 37 | oveq 6656 |
. . . . . . . . 9
| |
| 38 | oveq 6656 |
. . . . . . . . . 10
| |
| 39 | oveq 6656 |
. . . . . . . . . . 11
| |
| 40 | 39 | oveq2d 6666 |
. . . . . . . . . 10
|
| 41 | 38, 40 | eqtrd 2656 |
. . . . . . . . 9
|
| 42 | 37, 41 | eqeq12d 2637 |
. . . . . . . 8
|
| 43 | 42 | 2ralbidv 2989 |
. . . . . . 7
|
| 44 | 36, 43 | anbi12d 747 |
. . . . . 6
|
| 45 | 44 | ralbidv 2986 |
. . . . 5
|
| 46 | 45 | elrab 3363 |
. . . 4
|
| 47 | 34, 46 | syl6bb 276 |
. . 3
|
| 48 | simpr 477 |
. . . . 5
| |
| 49 | fvex 6201 |
. . . . . . 7
| |
| 50 | 8, 49 | eqeltri 2697 |
. . . . . 6
|
| 51 | xpexg 6960 |
. . . . . 6
| |
| 52 | 50, 48, 51 | sylancr 695 |
. . . . 5
|
| 53 | 48, 52 | elmapd 7871 |
. . . 4
|
| 54 | 53 | anbi1d 741 |
. . 3
|
| 55 | 47, 54 | bitrd 268 |
. 2
|
| 56 | 2, 55 | biadan2 674 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-ga 17723 |
| This theorem is referenced by: gagrp 17725 gaset 17726 gagrpid 17727 gaf 17728 gaass 17730 ga0 17731 gaid 17732 subgga 17733 gass 17734 gasubg 17735 lactghmga 17824 sylow1lem2 18014 sylow2blem2 18036 sylow3lem1 18042 |
| Copyright terms: Public domain | W3C validator |