MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg3 Structured version   Visualization version   GIF version

Theorem isnsg3 17628
Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
isnsg3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 17626 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
3 isnsg3.2 . . . . . 6 + = (+g𝐺)
4 isnsg3.3 . . . . . 6 = (-g𝐺)
52, 3, 4nsgconj 17627 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋𝑦𝑆) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
653expb 1266 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑥𝑋𝑦𝑆)) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
76ralrimivva 2971 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
81, 7jca 554 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
9 simpl 473 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
10 subgrcl 17599 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1110ad2antrr 762 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝐺 ∈ Grp)
12 simprll 802 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑧𝑋)
13 eqid 2622 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
14 eqid 2622 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
152, 3, 13, 14grplinv 17468 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1611, 12, 15syl2anc 693 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1716oveq1d 6665 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
182, 14grpinvcl 17467 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
1911, 12, 18syl2anc 693 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑋)
20 simprlr 803 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑤𝑋)
212, 3grpass 17431 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
2211, 19, 12, 20, 21syl13anc 1328 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
232, 3, 13grplid 17452 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
2411, 20, 23syl2anc 693 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((0g𝐺) + 𝑤) = 𝑤)
2517, 22, 243eqtr3d 2664 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
2625oveq1d 6665 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 ((invg𝐺)‘𝑧)))
272, 3, 4, 14, 11, 20, 12grpsubinv 17488 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
2826, 27eqtrd 2656 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
29 simprr 796 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
30 simplr 792 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
31 oveq1 6657 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → (𝑥 + 𝑦) = (((invg𝐺)‘𝑧) + 𝑦))
32 id 22 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → 𝑥 = ((invg𝐺)‘𝑧))
3331, 32oveq12d 6668 . . . . . . . . 9 (𝑥 = ((invg𝐺)‘𝑧) → ((𝑥 + 𝑦) 𝑥) = ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)))
3433eleq1d 2686 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → (((𝑥 + 𝑦) 𝑥) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆))
35 oveq2 6658 . . . . . . . . . 10 (𝑦 = (𝑧 + 𝑤) → (((invg𝐺)‘𝑧) + 𝑦) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
3635oveq1d 6665 . . . . . . . . 9 (𝑦 = (𝑧 + 𝑤) → ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) = ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)))
3736eleq1d 2686 . . . . . . . 8 (𝑦 = (𝑧 + 𝑤) → (((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆))
3834, 37rspc2va 3323 . . . . . . 7 (((((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑧 + 𝑤) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
3919, 29, 30, 38syl21anc 1325 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
4028, 39eqeltrrd 2702 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 + 𝑧) ∈ 𝑆)
4140expr 643 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
4241ralrimivva 2971 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
432, 3isnsg2 17624 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆)))
449, 42, 43sylanbrc 698 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
458, 44impbii 199 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  SubGrpcsubg 17588  NrmSGrpcnsg 17589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-nsg 17592
This theorem is referenced by:  nsgacs  17630  0nsg  17639  nsgid  17640  ghmnsgima  17684  ghmnsgpreima  17685  cntrsubgnsg  17773  clsnsg  21913
  Copyright terms: Public domain W3C validator