| Step | Hyp | Ref
| Expression |
| 1 | | nsgsubg 17626 |
. . 3
⊢ (𝑉 ∈ (NrmSGrp‘𝑇) → 𝑉 ∈ (SubGrp‘𝑇)) |
| 2 | | ghmpreima 17682 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |
| 3 | 1, 2 | sylan2 491 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |
| 4 | | ghmgrp1 17662 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
| 5 | 4 | ad2antrr 762 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑆 ∈ Grp) |
| 6 | | simprl 794 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑥 ∈ (Base‘𝑆)) |
| 7 | | simprr 796 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑦 ∈ (◡𝐹 “ 𝑉)) |
| 8 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 9 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 10 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 11 | 9, 10 | ghmf 17664 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 12 | 8, 11 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 13 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆)) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹 Fn (Base‘𝑆)) |
| 15 | | elpreima 6337 |
. . . . . . . . 9
⊢ (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (◡𝐹 “ 𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉))) |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑦 ∈ (◡𝐹 “ 𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉))) |
| 17 | 7, 16 | mpbid 222 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉)) |
| 18 | 17 | simpld 475 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑦 ∈ (Base‘𝑆)) |
| 19 | | eqid 2622 |
. . . . . . 7
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 20 | 9, 19 | grpcl 17430 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 21 | 5, 6, 18, 20 | syl3anc 1326 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 22 | | eqid 2622 |
. . . . . 6
⊢
(-g‘𝑆) = (-g‘𝑆) |
| 23 | 9, 22 | grpsubcl 17495 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆)) |
| 24 | 5, 21, 6, 23 | syl3anc 1326 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆)) |
| 25 | | eqid 2622 |
. . . . . . . 8
⊢
(-g‘𝑇) = (-g‘𝑇) |
| 26 | 9, 22, 25 | ghmsub 17668 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
| 27 | 8, 21, 6, 26 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
| 28 | | eqid 2622 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 29 | 9, 19, 28 | ghmlin 17665 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 30 | 8, 6, 18, 29 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 31 | 30 | oveq1d 6665 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥)) = (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
| 32 | 27, 31 | eqtrd 2656 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
| 33 | | simplr 792 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑉 ∈ (NrmSGrp‘𝑇)) |
| 34 | 12, 6 | ffvelrnd 6360 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘𝑥) ∈ (Base‘𝑇)) |
| 35 | 17 | simprd 479 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘𝑦) ∈ 𝑉) |
| 36 | 10, 28, 25 | nsgconj 17627 |
. . . . . 6
⊢ ((𝑉 ∈ (NrmSGrp‘𝑇) ∧ (𝐹‘𝑥) ∈ (Base‘𝑇) ∧ (𝐹‘𝑦) ∈ 𝑉) → (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥)) ∈ 𝑉) |
| 37 | 33, 34, 35, 36 | syl3anc 1326 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥)) ∈ 𝑉) |
| 38 | 32, 37 | eqeltrd 2701 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉) |
| 39 | | elpreima 6337 |
. . . . 5
⊢ (𝐹 Fn (Base‘𝑆) → (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉) ↔ (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉))) |
| 40 | 14, 39 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉) ↔ (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉))) |
| 41 | 24, 38, 40 | mpbir2and 957 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉)) |
| 42 | 41 | ralrimivva 2971 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (◡𝐹 “ 𝑉)((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉)) |
| 43 | 9, 19, 22 | isnsg3 17628 |
. 2
⊢ ((◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆) ↔ ((◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (◡𝐹 “ 𝑉)((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉))) |
| 44 | 3, 42, 43 | sylanbrc 698 |
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) |