| Step | Hyp | Ref
| Expression |
| 1 | | nsgsubg 17626 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 2 | | subgntr.h |
. . . 4
⊢ 𝐽 = (TopOpen‘𝐺) |
| 3 | 2 | clssubg 21912 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) |
| 4 | 1, 3 | sylan2 491 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) |
| 5 | | df-ima 5127 |
. . . . . . 7
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) |
| 6 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 7 | 2, 6 | tgptopon 21886 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
| 8 | 7 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 9 | | topontop 20718 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐽 ∈ Top) |
| 11 | 1 | ad2antlr 763 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 12 | 6 | subgss 17595 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
| 14 | | toponuni 20719 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
| 15 | 8, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
| 16 | 13, 15 | sseqtrd 3641 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑆 ⊆ ∪ 𝐽) |
| 17 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 18 | 17 | clsss3 20863 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
| 19 | 10, 16, 18 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
| 20 | 19, 15 | sseqtr4d 3642 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺)) |
| 21 | 20 | resmptd 5452 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
| 22 | 21 | rneqd 5353 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
| 23 | 5, 22 | syl5eq 2668 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
| 24 | | eqid 2622 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 25 | | tgptmd 21883 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
| 26 | 25 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐺 ∈ TopMnd) |
| 27 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) |
| 28 | 8, 8, 27 | cnmptc 21465 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| 29 | 8 | cnmptid 21464 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽)) |
| 30 | 2, 24, 26, 8, 28, 29 | cnmpt1plusg 21891 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽 Cn 𝐽)) |
| 31 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 32 | 2, 31 | tgpsubcn 21894 |
. . . . . . . . . 10
⊢ (𝐺 ∈ TopGrp →
(-g‘𝐺)
∈ ((𝐽
×t 𝐽) Cn
𝐽)) |
| 33 | 32 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 34 | 8, 30, 28, 33 | cnmpt12f 21469 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 35 | 17 | cnclsi 21076 |
. . . . . . . 8
⊢ (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑆 ⊆ ∪ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆))) |
| 36 | 34, 16, 35 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆))) |
| 37 | | df-ima 5127 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) |
| 38 | 13 | resmptd 5452 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
| 39 | 38 | rneqd 5353 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ↾ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
| 40 | 37, 39 | syl5eq 2668 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥))) |
| 41 | 6, 24, 31 | nsgconj 17627 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑆) |
| 42 | 41 | 3expa 1265 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑆) |
| 43 | 42 | adantlll 754 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ 𝑆) |
| 44 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) = (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) |
| 45 | 43, 44 | fmptd 6385 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):𝑆⟶𝑆) |
| 46 | | frn 6053 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):𝑆⟶𝑆 → ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ 𝑆) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ 𝑆 ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ 𝑆) |
| 48 | 40, 47 | eqsstrd 3639 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) |
| 49 | 17 | clsss 20858 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽
∧ ((𝑦 ∈
(Base‘𝐺) ↦
((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆) ⊆ 𝑆) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) |
| 50 | 10, 16, 48, 49 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((cls‘𝐽)‘((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ 𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) |
| 51 | 36, 50 | sstrd 3613 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆)) |
| 52 | 23, 51 | eqsstr3d 3640 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)) |
| 53 | | ovex 6678 |
. . . . . . 7
⊢ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ V |
| 54 | | eqid 2622 |
. . . . . . 7
⊢ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) = (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) |
| 55 | 53, 54 | fnmpti 6022 |
. . . . . 6
⊢ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) |
| 56 | | df-f 5892 |
. . . . . 6
⊢ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) Fn ((cls‘𝐽)‘𝑆) ∧ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆))) |
| 57 | 55, 56 | mpbiran 953 |
. . . . 5
⊢ ((𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆) ↔ ran (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)) ⊆ ((cls‘𝐽)‘𝑆)) |
| 58 | 52, 57 | sylibr 224 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆)) |
| 59 | 54 | fmpt 6381 |
. . . 4
⊢
(∀𝑦 ∈
((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑦 ∈ ((cls‘𝐽)‘𝑆) ↦ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥)):((cls‘𝐽)‘𝑆)⟶((cls‘𝐽)‘𝑆)) |
| 60 | 58, 59 | sylibr 224 |
. . 3
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)) |
| 61 | 60 | ralrimiva 2966 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆)) |
| 62 | 6, 24, 31 | isnsg3 17628 |
. 2
⊢
(((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ ((cls‘𝐽)‘𝑆))) |
| 63 | 4, 61, 62 | sylanbrc 698 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺)) |