![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iundom | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
Ref | Expression |
---|---|
iundom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) | |
2 | simpl 473 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → 𝐴 ∈ 𝑉) | |
3 | ovex 6678 | . . . . . 6 ⊢ (𝐵 ↑𝑚 𝐶) ∈ V | |
4 | 3 | rgenw 2924 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ V |
5 | iunexg 7143 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ V) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ V) | |
6 | 2, 4, 5 | sylancl 694 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ V) |
7 | numth3 9292 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ V → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ dom card) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ dom card) |
9 | numacn 8872 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ dom card → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ AC 𝐴)) | |
10 | 2, 8, 9 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑𝑚 𝐶) ∈ AC 𝐴) |
11 | simpr 477 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) | |
12 | reldom 7961 | . . . . . 6 ⊢ Rel ≼ | |
13 | 12 | brrelexi 5158 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → 𝐶 ∈ V) |
14 | 13 | ralimi 2952 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ V) |
15 | iunexg 7143 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) | |
16 | 14, 15 | sylan2 491 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) |
17 | 1, 10, 11 | iundom2g 9362 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵)) |
18 | 12 | brrelex2i 5159 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V) |
19 | numth3 9292 | . . . 4 ⊢ ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card) | |
20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
21 | numacn 8872 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶)) | |
22 | 16, 20, 21 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶) |
23 | 1, 10, 11, 22 | iundomg 9363 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 {csn 4177 ∪ ciun 4520 class class class wbr 4653 × cxp 5112 dom cdm 5114 (class class class)co 6650 ↑𝑚 cmap 7857 ≼ cdom 7953 cardccrd 8761 AC wacn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-ac2 9285 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-card 8765 df-acn 8768 df-ac 8939 |
This theorem is referenced by: unidom 9365 alephreg 9404 inar1 9597 |
Copyright terms: Public domain | W3C validator |