MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom Structured version   Visualization version   GIF version

Theorem iundom 9364
Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
iundom ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem iundom
StepHypRef Expression
1 eqid 2622 . 2 𝑥𝐴 ({𝑥} × 𝐶) = 𝑥𝐴 ({𝑥} × 𝐶)
2 simpl 473 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝐴𝑉)
3 ovex 6678 . . . . . 6 (𝐵𝑚 𝐶) ∈ V
43rgenw 2924 . . . . 5 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V
5 iunexg 7143 . . . . 5 ((𝐴𝑉 ∧ ∀𝑥𝐴 (𝐵𝑚 𝐶) ∈ V) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V)
62, 4, 5sylancl 694 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V)
7 numth3 9292 . . . 4 ( 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card)
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card)
9 numacn 8872 . . 3 (𝐴𝑉 → ( 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ AC 𝐴))
102, 8, 9sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ AC 𝐴)
11 simpr 477 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ∀𝑥𝐴 𝐶𝐵)
12 reldom 7961 . . . . . 6 Rel ≼
1312brrelexi 5158 . . . . 5 (𝐶𝐵𝐶 ∈ V)
1413ralimi 2952 . . . 4 (∀𝑥𝐴 𝐶𝐵 → ∀𝑥𝐴 𝐶 ∈ V)
15 iunexg 7143 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶 ∈ V) → 𝑥𝐴 𝐶 ∈ V)
1614, 15sylan2 491 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ V)
171, 10, 11iundom2g 9362 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵))
1812brrelex2i 5159 . . . 4 ( 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V)
19 numth3 9292 . . . 4 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card)
2017, 18, 193syl 18 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ dom card)
21 numacn 8872 . . 3 ( 𝑥𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶))
2216, 20, 21sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶)
231, 10, 11, 22iundomg 9363 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wral 2912  Vcvv 3200  {csn 4177   ciun 4520   class class class wbr 4653   × cxp 5112  dom cdm 5114  (class class class)co 6650  𝑚 cmap 7857  cdom 7953  cardccrd 8761  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by:  unidom  9365  alephreg  9404  inar1  9597
  Copyright terms: Public domain W3C validator