MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom Structured version   Visualization version   Unicode version

Theorem iundom 9364
Description: An upper bound for the cardinality of an indexed union.  C depends on  x and should be thought of as  C ( x ). (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
iundom  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  ~<_  ( A  X.  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    V( x)

Proof of Theorem iundom
StepHypRef Expression
1 eqid 2622 . 2  |-  U_ x  e.  A  ( {
x }  X.  C
)  =  U_ x  e.  A  ( {
x }  X.  C
)
2 simpl 473 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  A  e.  V )
3 ovex 6678 . . . . . 6  |-  ( B  ^m  C )  e. 
_V
43rgenw 2924 . . . . 5  |-  A. x  e.  A  ( B  ^m  C )  e.  _V
5 iunexg 7143 . . . . 5  |-  ( ( A  e.  V  /\  A. x  e.  A  ( B  ^m  C )  e.  _V )  ->  U_ x  e.  A  ( B  ^m  C )  e.  _V )
62, 4, 5sylancl 694 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e.  _V )
7 numth3 9292 . . . 4  |-  ( U_ x  e.  A  ( B  ^m  C )  e. 
_V  ->  U_ x  e.  A  ( B  ^m  C )  e.  dom  card )
86, 7syl 17 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e.  dom  card )
9 numacn 8872 . . 3  |-  ( A  e.  V  ->  ( U_ x  e.  A  ( B  ^m  C )  e.  dom  card  ->  U_ x  e.  A  ( B  ^m  C )  e. AC  A ) )
102, 8, 9sylc 65 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( B  ^m  C )  e. AC  A )
11 simpr 477 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  A. x  e.  A  C  ~<_  B )
12 reldom 7961 . . . . . 6  |-  Rel  ~<_
1312brrelexi 5158 . . . . 5  |-  ( C  ~<_  B  ->  C  e.  _V )
1413ralimi 2952 . . . 4  |-  ( A. x  e.  A  C  ~<_  B  ->  A. x  e.  A  C  e.  _V )
15 iunexg 7143 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  e.  _V )  ->  U_ x  e.  A  C  e.  _V )
1614, 15sylan2 491 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  e.  _V )
171, 10, 11iundom2g 9362 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  ( {
x }  X.  C
)  ~<_  ( A  X.  B ) )
1812brrelex2i 5159 . . . 4  |-  ( U_ x  e.  A  ( { x }  X.  C )  ~<_  ( A  X.  B )  -> 
( A  X.  B
)  e.  _V )
19 numth3 9292 . . . 4  |-  ( ( A  X.  B )  e.  _V  ->  ( A  X.  B )  e. 
dom  card )
2017, 18, 193syl 18 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  ( A  X.  B )  e. 
dom  card )
21 numacn 8872 . . 3  |-  ( U_ x  e.  A  C  e.  _V  ->  ( ( A  X.  B )  e. 
dom  card  ->  ( A  X.  B )  e. AC  U_ x  e.  A  C )
)
2216, 20, 21sylc 65 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  ( A  X.  B )  e. AC  U_ x  e.  A  C
)
231, 10, 11, 22iundomg 9363 1  |-  ( ( A  e.  V  /\  A. x  e.  A  C  ~<_  B )  ->  U_ x  e.  A  C  ~<_  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   _Vcvv 3200   {csn 4177   U_ciun 4520   class class class wbr 4653    X. cxp 5112   dom cdm 5114  (class class class)co 6650    ^m cmap 7857    ~<_ cdom 7953   cardccrd 8761  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by:  unidom  9365  alephreg  9404  inar1  9597
  Copyright terms: Public domain W3C validator