| Step | Hyp | Ref
| Expression |
| 1 | | uniss 4458 |
. . . . . . 7
⊢ (𝑥 ⊆
(𝑘Gen‘𝐽)
→ ∪ 𝑥 ⊆ ∪
(𝑘Gen‘𝐽)) |
| 2 | | kgenval 21338 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽) =
{𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) |
| 3 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))} ⊆ 𝒫 𝑋 |
| 4 | 2, 3 | syl6eqss 3655 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
⊆ 𝒫 𝑋) |
| 5 | | sspwuni 4611 |
. . . . . . . 8
⊢
((𝑘Gen‘𝐽) ⊆ 𝒫 𝑋 ↔ ∪
(𝑘Gen‘𝐽)
⊆ 𝑋) |
| 6 | 4, 5 | sylib 208 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ (𝑘Gen‘𝐽) ⊆ 𝑋) |
| 7 | 1, 6 | sylan9ssr 3617 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∪ 𝑥
⊆ 𝑋) |
| 8 | | iunin2 4584 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) = (𝑘 ∩ ∪
𝑦 ∈ 𝑥 𝑦) |
| 9 | | uniiun 4573 |
. . . . . . . . . . 11
⊢ ∪ 𝑥 =
∪ 𝑦 ∈ 𝑥 𝑦 |
| 10 | 9 | ineq2i 3811 |
. . . . . . . . . 10
⊢ (𝑘 ∩ ∪ 𝑥) =
(𝑘 ∩ ∪ 𝑦 ∈ 𝑥 𝑦) |
| 11 | | incom 3805 |
. . . . . . . . . 10
⊢ (𝑘 ∩ ∪ 𝑥) =
(∪ 𝑥 ∩ 𝑘) |
| 12 | 8, 10, 11 | 3eqtr2i 2650 |
. . . . . . . . 9
⊢ ∪ 𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) = (∪ 𝑥 ∩ 𝑘) |
| 13 | | cmptop 21198 |
. . . . . . . . . . 11
⊢ ((𝐽 ↾t 𝑘) ∈ Comp → (𝐽 ↾t 𝑘) ∈ Top) |
| 14 | 13 | ad2antll 765 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Top) |
| 15 | | incom 3805 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ 𝑘) = (𝑘 ∩ 𝑦) |
| 16 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ⊆ (𝑘Gen‘𝐽)) |
| 17 | 16 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ (𝑘Gen‘𝐽)) |
| 18 | | simplrr 801 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) ∧ 𝑦 ∈ 𝑥) → (𝐽 ↾t 𝑘) ∈ Comp) |
| 19 | | kgeni 21340 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝑘)
∈ Comp) → (𝑦
∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 20 | 17, 18, 19 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 21 | 15, 20 | syl5eqelr 2706 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) ∧ 𝑦 ∈ 𝑥) → (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) |
| 22 | 21 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ∀𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) |
| 23 | | iunopn 20703 |
. . . . . . . . . 10
⊢ (((𝐽 ↾t 𝑘) ∈ Top ∧ ∀𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) → ∪
𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) |
| 24 | 14, 22, 23 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ∪ 𝑦 ∈ 𝑥 (𝑘 ∩ 𝑦) ∈ (𝐽 ↾t 𝑘)) |
| 25 | 12, 24 | syl5eqelr 2706 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 26 | 25 | expr 643 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽 ↾t 𝑘) ∈ Comp → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 27 | 26 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 28 | | elkgen 21339 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∪ 𝑥
∈ (𝑘Gen‘𝐽) ↔ (∪ 𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 29 | 28 | adantr 481 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → (∪ 𝑥
∈ (𝑘Gen‘𝐽) ↔ (∪ 𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (∪ 𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 30 | 7, 27, 29 | mpbir2and 957 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∪ 𝑥
∈ (𝑘Gen‘𝐽)) |
| 31 | 30 | ex 450 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ⊆ (𝑘Gen‘𝐽) → ∪ 𝑥
∈ (𝑘Gen‘𝐽))) |
| 32 | 31 | alrimiv 1855 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → ∪ 𝑥
∈ (𝑘Gen‘𝐽))) |
| 33 | | inss1 3833 |
. . . . . 6
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 |
| 34 | | elssuni 4467 |
. . . . . . . 8
⊢ (𝑥 ∈
(𝑘Gen‘𝐽)
→ 𝑥 ⊆ ∪ (𝑘Gen‘𝐽)) |
| 35 | 34 | ad2antrl 764 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥 ⊆ ∪
(𝑘Gen‘𝐽)) |
| 36 | | ssid 3624 |
. . . . . . . . . . . 12
⊢ 𝑋 ⊆ 𝑋 |
| 37 | 36 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ⊆ 𝑋) |
| 38 | | elpwi 4168 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋) |
| 39 | 38 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 ⊆ 𝑋) |
| 40 | | sseqin2 3817 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑘) = 𝑘) |
| 41 | 39, 40 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑋 ∩ 𝑘) = 𝑘) |
| 42 | 38 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp) → 𝑘 ⊆ 𝑋) |
| 43 | | resttopon 20965 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ⊆ 𝑋) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
| 44 | 42, 43 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
| 45 | | toponmax 20730 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ↾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 ∈ (𝐽 ↾t 𝑘)) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑘 ∈ (𝐽 ↾t 𝑘)) |
| 47 | 41, 46 | eqeltrd 2701 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑋 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 48 | 47 | expr 643 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽 ↾t 𝑘) ∈ Comp → (𝑋 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 49 | 48 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑋 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 50 | | elkgen 21339 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑋 ∈ (𝑘Gen‘𝐽) ↔ (𝑋 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑋 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 51 | 37, 49, 50 | mpbir2and 957 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ (𝑘Gen‘𝐽)) |
| 52 | | elssuni 4467 |
. . . . . . . . . 10
⊢ (𝑋 ∈
(𝑘Gen‘𝐽)
→ 𝑋 ⊆ ∪ (𝑘Gen‘𝐽)) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ⊆ ∪
(𝑘Gen‘𝐽)) |
| 54 | 53, 6 | eqssd 3620 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
| 55 | 54 | adantr 481 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑋 = ∪
(𝑘Gen‘𝐽)) |
| 56 | 35, 55 | sseqtr4d 3642 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥 ⊆ 𝑋) |
| 57 | 33, 56 | syl5ss 3614 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥 ∩ 𝑦) ⊆ 𝑋) |
| 58 | | inindir 3831 |
. . . . . . . 8
⊢ ((𝑥 ∩ 𝑦) ∩ 𝑘) = ((𝑥 ∩ 𝑘) ∩ (𝑦 ∩ 𝑘)) |
| 59 | 13 | ad2antll 765 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Top) |
| 60 | | simplrl 800 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐽)) |
| 61 | | simprr 796 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝐽 ↾t 𝑘) ∈ Comp) |
| 62 | | kgeni 21340 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t 𝑘)
∈ Comp) → (𝑥
∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 63 | 60, 61, 62 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 64 | | simplrr 801 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → 𝑦 ∈ (𝑘Gen‘𝐽)) |
| 65 | 64, 61, 19 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → (𝑦 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 66 | | inopn 20704 |
. . . . . . . . 9
⊢ (((𝐽 ↾t 𝑘) ∈ Top ∧ (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) ∧ (𝑦 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → ((𝑥 ∩ 𝑘) ∩ (𝑦 ∩ 𝑘)) ∈ (𝐽 ↾t 𝑘)) |
| 67 | 59, 63, 65, 66 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑥 ∩ 𝑘) ∩ (𝑦 ∩ 𝑘)) ∈ (𝐽 ↾t 𝑘)) |
| 68 | 58, 67 | syl5eqel 2705 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽 ↾t 𝑘) ∈ Comp)) → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 69 | 68 | expr 643 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽 ↾t 𝑘) ∈ Comp → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 70 | 69 | ralrimiva 2966 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 71 | | elkgen 21339 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥 ∩ 𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 72 | 71 | adantr 481 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ((𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥 ∩ 𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → ((𝑥 ∩ 𝑦) ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 73 | 57, 70, 72 | mpbir2and 957 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽)) |
| 74 | 73 | ralrimivva 2971 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥 ∈
(𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽)) |
| 75 | | fvex 6201 |
. . . 4
⊢
(𝑘Gen‘𝐽) ∈ V |
| 76 | | istopg 20700 |
. . . 4
⊢
((𝑘Gen‘𝐽) ∈ V → ((𝑘Gen‘𝐽) ∈ Top ↔
(∀𝑥(𝑥 ⊆
(𝑘Gen‘𝐽)
→ ∪ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽)))) |
| 77 | 75, 76 | ax-mp 5 |
. . 3
⊢
((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → ∪ 𝑥
∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥 ∩ 𝑦) ∈ (𝑘Gen‘𝐽))) |
| 78 | 32, 74, 77 | sylanbrc 698 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
∈ Top) |
| 79 | | istopon 20717 |
. 2
⊢
((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ↔ ((𝑘Gen‘𝐽) ∈ Top ∧ 𝑋 = ∪
(𝑘Gen‘𝐽))) |
| 80 | 78, 54, 79 | sylanbrc 698 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(𝑘Gen‘𝐽)
∈ (TopOn‘𝑋)) |