![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version |
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 20718 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ Top) |
3 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
4 | toponmax 20730 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
5 | ssexg 4804 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
6 | 3, 4, 5 | syl2anr 495 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
7 | resttop 20964 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
8 | 2, 6, 7 | syl2anc 693 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
9 | simpr 477 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
10 | sseqin2 3817 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
11 | 9, 10 | sylib 208 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
12 | simpl 473 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
13 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
14 | elrestr 16089 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
15 | 12, 6, 13, 14 | syl3anc 1326 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
16 | 11, 15 | eqeltrrd 2702 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
17 | elssuni 4467 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
19 | restval 16087 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
20 | 6, 19 | syldan 487 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
21 | inss2 3834 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
22 | vex 3203 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
23 | 22 | inex1 4799 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
24 | 23 | elpw 4164 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
25 | 21, 24 | mpbir 221 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
26 | 25 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
27 | eqid 2622 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) | |
28 | 26, 27 | fmptd 6385 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
29 | frn 6053 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴 → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) | |
30 | 28, 29 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
31 | 20, 30 | eqsstrd 3639 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
32 | sspwuni 4611 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
33 | 31, 32 | sylib 208 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
34 | 18, 33 | eqssd 3620 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
35 | istopon 20717 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
36 | 8, 34, 35 | sylanbrc 698 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 ↦ cmpt 4729 ran crn 5115 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↾t crest 16081 Topctop 20698 TopOnctopon 20715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 |
This theorem is referenced by: restuni 20966 stoig 20967 restsn2 20975 restlp 20987 restperf 20988 perfopn 20989 cnrest 21089 cnrest2 21090 cnrest2r 21091 cnpresti 21092 cnprest 21093 cnprest2 21094 restcnrm 21166 connsuba 21223 kgentopon 21341 1stckgenlem 21356 kgen2ss 21358 kgencn 21359 xkoinjcn 21490 qtoprest 21520 flimrest 21787 fclsrest 21828 flfcntr 21847 symgtgp 21905 dvrcn 21987 sszcld 22620 divcn 22671 cncfmptc 22714 cncfmptid 22715 cncfmpt2f 22717 cdivcncf 22720 cnmpt2pc 22727 icchmeo 22740 htpycc 22779 pcocn 22817 pcohtpylem 22819 pcopt 22822 pcopt2 22823 pcoass 22824 pcorevlem 22826 relcmpcmet 23115 limcvallem 23635 ellimc2 23641 limcres 23650 cnplimc 23651 cnlimc 23652 limccnp 23655 limccnp2 23656 dvbss 23665 perfdvf 23667 dvreslem 23673 dvres2lem 23674 dvcnp2 23683 dvcn 23684 dvaddbr 23701 dvmulbr 23702 dvcmulf 23708 dvmptres2 23725 dvmptcmul 23727 dvmptntr 23734 dvmptfsum 23738 dvcnvlem 23739 dvcnv 23740 lhop1lem 23776 lhop2 23778 lhop 23779 dvcnvrelem2 23781 dvcnvre 23782 ftc1lem3 23801 ftc1cn 23806 taylthlem1 24127 ulmdvlem3 24156 psercn 24180 abelth 24195 logcn 24393 cxpcn 24486 cxpcn2 24487 cxpcn3 24489 resqrtcn 24490 sqrtcn 24491 loglesqrt 24499 xrlimcnp 24695 efrlim 24696 ftalem3 24801 xrge0pluscn 29986 xrge0mulc1cn 29987 lmlimxrge0 29994 pnfneige0 29997 lmxrge0 29998 esumcvg 30148 cxpcncf1 30673 cvxpconn 31224 cvxsconn 31225 cvmsf1o 31254 cvmliftlem8 31274 cvmlift2lem9a 31285 cvmlift2lem11 31295 cvmlift3lem6 31306 ivthALT 32330 poimir 33442 broucube 33443 cnambfre 33458 ftc1cnnc 33484 areacirclem2 33501 areacirclem4 33503 fsumcncf 40091 ioccncflimc 40098 cncfuni 40099 icccncfext 40100 icocncflimc 40102 cncfiooicclem1 40106 cxpcncf2 40113 dvmptconst 40129 dvmptidg 40131 dvresntr 40132 itgsubsticclem 40191 dirkercncflem2 40321 dirkercncflem4 40323 fourierdlem32 40356 fourierdlem33 40357 fourierdlem62 40385 fourierdlem93 40416 fourierdlem101 40424 |
Copyright terms: Public domain | W3C validator |