Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcveq0 Structured version   Visualization version   GIF version

Theorem lsatcveq0 34319
Description: A subspace covered by an atom must be the zero subspace. (atcveq0 29207 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lsatcveq0.o 0 = (0g𝑊)
lsatcveq0.s 𝑆 = (LSubSp‘𝑊)
lsatcveq0.a 𝐴 = (LSAtoms‘𝑊)
lsatcveq0.c 𝐶 = ( ⋖L𝑊)
lsatcveq0.w (𝜑𝑊 ∈ LVec)
lsatcveq0.u (𝜑𝑈𝑆)
lsatcveq0.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lsatcveq0 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))

Proof of Theorem lsatcveq0
StepHypRef Expression
1 lsatcveq0.s . . . . 5 𝑆 = (LSubSp‘𝑊)
2 lsatcveq0.c . . . . 5 𝐶 = ( ⋖L𝑊)
3 lsatcveq0.w . . . . . 6 (𝜑𝑊 ∈ LVec)
43adantr 481 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑊 ∈ LVec)
5 lsatcveq0.u . . . . . 6 (𝜑𝑈𝑆)
65adantr 481 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝑆)
7 lsatcveq0.a . . . . . . 7 𝐴 = (LSAtoms‘𝑊)
8 lveclmod 19106 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
10 lsatcveq0.q . . . . . . 7 (𝜑𝑄𝐴)
111, 7, 9, 10lsatlssel 34284 . . . . . 6 (𝜑𝑄𝑆)
1211adantr 481 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑄𝑆)
13 simpr 477 . . . . 5 ((𝜑𝑈𝐶𝑄) → 𝑈𝐶𝑄)
141, 2, 4, 6, 12, 13lcvpss 34311 . . . 4 ((𝜑𝑈𝐶𝑄) → 𝑈𝑄)
1514ex 450 . . 3 (𝜑 → (𝑈𝐶𝑄𝑈𝑄))
16 lsatcveq0.o . . . . 5 0 = (0g𝑊)
1716, 7, 2, 3, 10lsatcv0 34318 . . . 4 (𝜑 → { 0 }𝐶𝑄)
1833ad2ant1 1082 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑊 ∈ LVec)
1916, 1lsssn0 18948 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
209, 19syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ 𝑆)
21203ad2ant1 1082 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ∈ 𝑆)
22113ad2ant1 1082 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑄𝑆)
2353ad2ant1 1082 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑆)
24 simp2 1062 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 }𝐶𝑄)
2516, 1lss0ss 18949 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → { 0 } ⊆ 𝑈)
269, 5, 25syl2anc 693 . . . . . . 7 (𝜑 → { 0 } ⊆ 𝑈)
27263ad2ant1 1082 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → { 0 } ⊆ 𝑈)
28 simp3 1063 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈𝑄)
291, 2, 18, 21, 22, 23, 24, 27, 28lcvnbtwn3 34315 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑄𝑈𝑄) → 𝑈 = { 0 })
30293exp 1264 . . . 4 (𝜑 → ({ 0 }𝐶𝑄 → (𝑈𝑄𝑈 = { 0 })))
3117, 30mpd 15 . . 3 (𝜑 → (𝑈𝑄𝑈 = { 0 }))
3215, 31syld 47 . 2 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
33 breq1 4656 . . 3 (𝑈 = { 0 } → (𝑈𝐶𝑄 ↔ { 0 }𝐶𝑄))
3417, 33syl5ibrcom 237 . 2 (𝜑 → (𝑈 = { 0 } → 𝑈𝐶𝑄))
3532, 34impbid 202 1 (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  wpss 3575  {csn 4177   class class class wbr 4653  cfv 5888  0gc0g 16100  LModclmod 18863  LSubSpclss 18932  LVecclvec 19102  LSAtomsclsa 34261  L clcv 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lcv 34306
This theorem is referenced by:  lcvp  34327  lsatcv1  34335
  Copyright terms: Public domain W3C validator