Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsat0cv Structured version   Visualization version   GIF version

Theorem lsat0cv 34320
Description: A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
lsat0cv.o 0 = (0g𝑊)
lsat0cv.s 𝑆 = (LSubSp‘𝑊)
lsat0cv.a 𝐴 = (LSAtoms‘𝑊)
lsat0cv.c 𝐶 = ( ⋖L𝑊)
lsat0cv.w (𝜑𝑊 ∈ LVec)
lsat0cv.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lsat0cv (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))

Proof of Theorem lsat0cv
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsat0cv.o . . 3 0 = (0g𝑊)
2 lsat0cv.a . . 3 𝐴 = (LSAtoms‘𝑊)
3 lsat0cv.c . . 3 𝐶 = ( ⋖L𝑊)
4 lsat0cv.w . . . 4 (𝜑𝑊 ∈ LVec)
54adantr 481 . . 3 ((𝜑𝑈𝐴) → 𝑊 ∈ LVec)
6 simpr 477 . . 3 ((𝜑𝑈𝐴) → 𝑈𝐴)
71, 2, 3, 5, 6lsatcv0 34318 . 2 ((𝜑𝑈𝐴) → { 0 }𝐶𝑈)
8 lsat0cv.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
9 lveclmod 19106 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
104, 9syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
1110adantr 481 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LMod)
121, 8lsssn0 18948 . . . . . . . . 9 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
1310, 12syl 17 . . . . . . . 8 (𝜑 → { 0 } ∈ 𝑆)
1413adantr 481 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ∈ 𝑆)
15 lsat0cv.u . . . . . . . 8 (𝜑𝑈𝑆)
1615adantr 481 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝑆)
17 simpr 477 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 }𝐶𝑈)
188, 3, 11, 14, 16, 17lcvpss 34311 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ⊊ 𝑈)
19 pssnel 4039 . . . . . 6 ({ 0 } ⊊ 𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2018, 19syl 17 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2115ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑈𝑆)
22 simprl 794 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥𝑈)
23 eqid 2622 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
2423, 8lssel 18938 . . . . . . . . . . 11 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
2521, 22, 24syl2anc 693 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ (Base‘𝑊))
26 velsn 4193 . . . . . . . . . . . . . 14 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2726biimpri 218 . . . . . . . . . . . . 13 (𝑥 = 0𝑥 ∈ { 0 })
2827necon3bi 2820 . . . . . . . . . . . 12 𝑥 ∈ { 0 } → 𝑥0 )
2928adantl 482 . . . . . . . . . . 11 ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → 𝑥0 )
3029adantl 482 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥0 )
31 eldifsn 4317 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ))
3225, 30, 31sylanbrc 698 . . . . . . . . 9 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ ((Base‘𝑊) ∖ { 0 }))
3332, 22jca 554 . . . . . . . 8 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3433ex 450 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
3534eximdv 1846 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
36 df-rex 2918 . . . . . 6 (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 ↔ ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3735, 36syl6ibr 242 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈))
3820, 37mpd 15 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈)
39 simpllr 799 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → { 0 }𝐶𝑈)
408, 3, 4, 13, 15lcvbr2 34309 . . . . . . . . . . 11 (𝜑 → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4140adantr 481 . . . . . . . . . 10 ((𝜑 ∧ { 0 }𝐶𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4241ad2antrr 762 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4310ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LMod)
4443ad2antrr 762 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑊 ∈ LMod)
45 eldifi 3732 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
4645adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
4746ad2antrr 762 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥 ∈ (Base‘𝑊))
48 eqid 2622 . . . . . . . . . . . . . . . 16 (LSpan‘𝑊) = (LSpan‘𝑊)
4923, 8, 48lspsncl 18977 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
5044, 47, 49syl2anc 693 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
511, 8lss0ss 18949 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
5244, 50, 51syl2anc 693 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
53 eldifsni 4320 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥0 )
5453adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥0 )
5554ad2antrr 762 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥0 )
5623, 1, 48lspsneq0 19012 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5744, 47, 56syl2anc 693 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5857necon3bid 2838 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) ≠ { 0 } ↔ 𝑥0 ))
5955, 58mpbird 247 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ≠ { 0 })
6059necomd 2849 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ≠ ((LSpan‘𝑊)‘{𝑥}))
61 df-pss 3590 . . . . . . . . . . . . 13 ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ↔ ({ 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}) ∧ { 0 } ≠ ((LSpan‘𝑊)‘{𝑥})))
6252, 60, 61sylanbrc 698 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}))
6315ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑈𝑆)
6463ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑈𝑆)
65 simplr 792 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥𝑈)
668, 48, 44, 64, 65lspsnel5a 18996 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
6762, 66jca 554 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
68 psseq2 3695 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ({ 0 } ⊊ 𝑠 ↔ { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥})))
69 sseq1 3626 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
7068, 69anbi12d 747 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑈) ↔ ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)))
71 eqeq1 2626 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠 = 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7270, 71imbi12d 334 . . . . . . . . . . . . 13 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ((({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7372rspcv 3305 . . . . . . . . . . . 12 (((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆 → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7450, 73syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7567, 74mpid 44 . . . . . . . . . 10 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7675expimpd 629 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → (({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈)) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7742, 76sylbid 230 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7839, 77mpd 15 . . . . . . 7 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)
7978eqcomd 2628 . . . . . 6 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → 𝑈 = ((LSpan‘𝑊)‘{𝑥}))
8079ex 450 . . . . 5 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑥𝑈𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8180reximdva 3017 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8238, 81mpd 15 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥}))
834adantr 481 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LVec)
8423, 48, 1, 2islsat 34278 . . . 4 (𝑊 ∈ LVec → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8583, 84syl 17 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8682, 85mpbird 247 . 2 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝐴)
877, 86impbida 877 1 (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  wss 3574  wpss 3575  {csn 4177   class class class wbr 4653  cfv 5888  Basecbs 15857  0gc0g 16100  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102  LSAtomsclsa 34261  L clcv 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lcv 34306
This theorem is referenced by:  mapdcnvatN  36955  mapdat  36956
  Copyright terms: Public domain W3C validator