![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatexch | Structured version Visualization version GIF version |
Description: The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 29240 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatexch.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatexch.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatexch.o | ⊢ 0 = (0g‘𝑊) |
lsatexch.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatexch.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatexch.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatexch.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatexch.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatexch.l | ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) |
lsatexch.z | ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) |
Ref | Expression |
---|---|
lsatexch | ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatexch.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | lveclmod 19106 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | lsatexch.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | 4 | lsssssubg 18958 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
7 | lsatexch.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 6, 7 | sseldd 3604 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | lsatexch.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
10 | lsatexch.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
11 | 4, 9, 3, 10 | lsatlssel 34284 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
12 | 6, 11 | sseldd 3604 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
13 | lsatexch.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
14 | 13 | lsmub2 18072 | . . 3 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
15 | 8, 12, 14 | syl2anc 693 | . 2 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑅)) |
16 | eqid 2622 | . . 3 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
17 | 4, 13 | lsmcl 19083 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑅 ∈ 𝑆) → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
18 | 3, 7, 11, 17 | syl3anc 1326 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ 𝑆) |
19 | lsatexch.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
20 | 4, 9, 3, 19 | lsatlssel 34284 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
21 | 4, 13 | lsmcl 19083 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆) → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
22 | 3, 7, 20, 21 | syl3anc 1326 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ∈ 𝑆) |
23 | lsatexch.z | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) | |
24 | lsatexch.o | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
25 | 4, 13, 24, 9, 16, 1, 7, 19 | lcvp 34327 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ 𝑄) = { 0 } ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄))) |
26 | 23, 25 | mpbid 222 | . . . . . 6 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑄)) |
27 | 4, 16, 1, 7, 22, 26 | lcvpss 34311 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑄)) |
28 | 13 | lsmub1 18071 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
29 | 8, 12, 28 | syl2anc 693 | . . . . . 6 ⊢ (𝜑 → 𝑈 ⊆ (𝑈 ⊕ 𝑅)) |
30 | lsatexch.l | . . . . . 6 ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) | |
31 | 6, 20 | sseldd 3604 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
32 | 6, 18 | sseldd 3604 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) |
33 | 13 | lsmlub 18078 | . . . . . . 7 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ (𝑈 ⊕ 𝑅) ∈ (SubGrp‘𝑊)) → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
34 | 8, 31, 32, 33 | syl3anc 1326 | . . . . . 6 ⊢ (𝜑 → ((𝑈 ⊆ (𝑈 ⊕ 𝑅) ∧ 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ↔ (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅))) |
35 | 29, 30, 34 | mpbi2and 956 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) ⊆ (𝑈 ⊕ 𝑅)) |
36 | 27, 35 | psssstrd 3716 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ 𝑅)) |
37 | 4, 13, 9, 16, 1, 7, 10 | lcv2 34329 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑈 ⊕ 𝑅) ↔ 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅))) |
38 | 36, 37 | mpbid 222 | . . 3 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(𝑈 ⊕ 𝑅)) |
39 | 4, 16, 1, 7, 18, 22, 38, 27, 35 | lcvnbtwn2 34314 | . 2 ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = (𝑈 ⊕ 𝑅)) |
40 | 15, 39 | sseqtr4d 3642 | 1 ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 ⊊ wpss 3575 {csn 4177 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 0gc0g 16100 SubGrpcsubg 17588 LSSumclsm 18049 LModclmod 18863 LSubSpclss 18932 LVecclvec 19102 LSAtomsclsa 34261 ⋖L clcv 34305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-oppg 17776 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lcv 34306 |
This theorem is referenced by: lsatexch1 34333 |
Copyright terms: Public domain | W3C validator |